Differences Between: [Versions 310 and 400] [Versions 310 and 401] [Versions 310 and 402] [Versions 310 and 403]
1 <?php 2 3 declare(strict_types=1); 4 5 namespace Phpml\DimensionReduction; 6 7 use Closure; 8 use Phpml\Exception\InvalidArgumentException; 9 use Phpml\Exception\InvalidOperationException; 10 use Phpml\Math\Distance\Euclidean; 11 use Phpml\Math\Distance\Manhattan; 12 use Phpml\Math\Matrix; 13 14 class KernelPCA extends PCA 15 { 16 public const KERNEL_RBF = 1; 17 18 public const KERNEL_SIGMOID = 2; 19 20 public const KERNEL_LAPLACIAN = 3; 21 22 public const KERNEL_LINEAR = 4; 23 24 /** 25 * Selected kernel function 26 * 27 * @var int 28 */ 29 protected $kernel; 30 31 /** 32 * Gamma value used by the kernel 33 * 34 * @var float|null 35 */ 36 protected $gamma; 37 38 /** 39 * Original dataset used to fit KernelPCA 40 * 41 * @var array 42 */ 43 protected $data = []; 44 45 /** 46 * Kernel principal component analysis (KernelPCA) is an extension of PCA using 47 * techniques of kernel methods. It is more suitable for data that involves 48 * vectors that are not linearly separable<br><br> 49 * Example: <b>$kpca = new KernelPCA(KernelPCA::KERNEL_RBF, null, 2, 15.0);</b> 50 * will initialize the algorithm with an RBF kernel having the gamma parameter as 15,0. <br> 51 * This transformation will return the same number of rows with only <i>2</i> columns. 52 * 53 * @param float $totalVariance Total variance to be preserved if numFeatures is not given 54 * @param int $numFeatures Number of columns to be returned 55 * @param float $gamma Gamma parameter is used with RBF and Sigmoid kernels 56 * 57 * @throws InvalidArgumentException 58 */ 59 public function __construct(int $kernel = self::KERNEL_RBF, ?float $totalVariance = null, ?int $numFeatures = null, ?float $gamma = null) 60 { 61 if (!in_array($kernel, [self::KERNEL_RBF, self::KERNEL_SIGMOID, self::KERNEL_LAPLACIAN, self::KERNEL_LINEAR], true)) { 62 throw new InvalidArgumentException('KernelPCA can be initialized with the following kernels only: Linear, RBF, Sigmoid and Laplacian'); 63 } 64 65 parent::__construct($totalVariance, $numFeatures); 66 67 $this->kernel = $kernel; 68 $this->gamma = $gamma; 69 } 70 71 /** 72 * Takes a data and returns a lower dimensional version 73 * of this data while preserving $totalVariance or $numFeatures. <br> 74 * $data is an n-by-m matrix and returned array is 75 * n-by-k matrix where k <= m 76 */ 77 public function fit(array $data): array 78 { 79 $numRows = count($data); 80 $this->data = $data; 81 82 if ($this->gamma === null) { 83 $this->gamma = 1.0 / $numRows; 84 } 85 86 $matrix = $this->calculateKernelMatrix($this->data, $numRows); 87 $matrix = $this->centerMatrix($matrix, $numRows); 88 89 $this->eigenDecomposition($matrix); 90 91 $this->fit = true; 92 93 return Matrix::transposeArray($this->eigVectors); 94 } 95 96 /** 97 * Transforms the given sample to a lower dimensional vector by using 98 * the variables obtained during the last run of <code>fit</code>. 99 * 100 * @throws InvalidArgumentException 101 * @throws InvalidOperationException 102 */ 103 public function transform(array $sample): array 104 { 105 if (!$this->fit) { 106 throw new InvalidOperationException('KernelPCA has not been fitted with respect to original dataset, please run KernelPCA::fit() first'); 107 } 108 109 if (is_array($sample[0])) { 110 throw new InvalidArgumentException('KernelPCA::transform() accepts only one-dimensional arrays'); 111 } 112 113 $pairs = $this->getDistancePairs($sample); 114 115 return $this->projectSample($pairs); 116 } 117 118 /** 119 * Calculates similarity matrix by use of selected kernel function<br> 120 * An n-by-m matrix is given and an n-by-n matrix is returned 121 */ 122 protected function calculateKernelMatrix(array $data, int $numRows): array 123 { 124 $kernelFunc = $this->getKernel(); 125 126 $matrix = []; 127 for ($i = 0; $i < $numRows; ++$i) { 128 for ($k = 0; $k < $numRows; ++$k) { 129 if ($i <= $k) { 130 $matrix[$i][$k] = $kernelFunc($data[$i], $data[$k]); 131 } else { 132 $matrix[$i][$k] = $matrix[$k][$i]; 133 } 134 } 135 } 136 137 return $matrix; 138 } 139 140 /** 141 * Kernel matrix is centered in its original space by using the following 142 * conversion: 143 * 144 * K′ = K − N.K − K.N + N.K.N where N is n-by-n matrix filled with 1/n 145 */ 146 protected function centerMatrix(array $matrix, int $n): array 147 { 148 $N = array_fill(0, $n, array_fill(0, $n, 1.0 / $n)); 149 $N = new Matrix($N, false); 150 $K = new Matrix($matrix, false); 151 152 // K.N (This term is repeated so we cache it once) 153 $K_N = $K->multiply($N); 154 // N.K 155 $N_K = $N->multiply($K); 156 // N.K.N 157 $N_K_N = $N->multiply($K_N); 158 159 return $K->subtract($N_K) 160 ->subtract($K_N) 161 ->add($N_K_N) 162 ->toArray(); 163 } 164 165 /** 166 * Returns the callable kernel function 167 * 168 * @throws \Exception 169 */ 170 protected function getKernel(): Closure 171 { 172 switch ($this->kernel) { 173 case self::KERNEL_LINEAR: 174 // k(x,y) = xT.y 175 return function ($x, $y) { 176 return Matrix::dot($x, $y)[0]; 177 }; 178 case self::KERNEL_RBF: 179 // k(x,y)=exp(-γ.|x-y|) where |..| is Euclidean distance 180 $dist = new Euclidean(); 181 182 return function ($x, $y) use ($dist) { 183 return exp(-$this->gamma * $dist->sqDistance($x, $y)); 184 }; 185 186 case self::KERNEL_SIGMOID: 187 // k(x,y)=tanh(γ.xT.y+c0) where c0=1 188 return function ($x, $y) { 189 $res = Matrix::dot($x, $y)[0] + 1.0; 190 191 return tanh((float) $this->gamma * $res); 192 }; 193 194 case self::KERNEL_LAPLACIAN: 195 // k(x,y)=exp(-γ.|x-y|) where |..| is Manhattan distance 196 $dist = new Manhattan(); 197 198 return function ($x, $y) use ($dist) { 199 return exp(-$this->gamma * $dist->distance($x, $y)); 200 }; 201 202 default: 203 // Not reached 204 throw new InvalidArgumentException(sprintf('KernelPCA initialized with invalid kernel: %d', $this->kernel)); 205 } 206 } 207 208 protected function getDistancePairs(array $sample): array 209 { 210 $kernel = $this->getKernel(); 211 212 $pairs = []; 213 foreach ($this->data as $row) { 214 $pairs[] = $kernel($row, $sample); 215 } 216 217 return $pairs; 218 } 219 220 protected function projectSample(array $pairs): array 221 { 222 // Normalize eigenvectors by eig = eigVectors / eigValues 223 $func = function ($eigVal, $eigVect) { 224 $m = new Matrix($eigVect, false); 225 $a = $m->divideByScalar($eigVal)->toArray(); 226 227 return $a[0]; 228 }; 229 $eig = array_map($func, $this->eigValues, $this->eigVectors); 230 231 // return k.dot(eig) 232 return Matrix::dot($pairs, $eig); 233 } 234 }
title
Description
Body
title
Description
Body
title
Description
Body
title
Body