Differences Between: [Versions 310 and 400] [Versions 310 and 401] [Versions 310 and 402] [Versions 310 and 403]
Class to obtain eigenvalues and eigenvectors of a real matrix.
Author: | Paul Meagher |
Author: | Mustafa Karabulut |
License: | PHP v3.0 |
Version: | 1.1 |
File Size: | 959 lines (33 kb) |
Included or required: | 0 times |
Referenced: | 0 times |
Includes or requires: | 0 files |
EigenvalueDecomposition:: (10 methods):
__construct()
getEigenvectors()
getRealEigenvalues()
getImagEigenvalues()
getDiagonalEigenvalues()
tred2()
tql2()
orthes()
cdiv()
hqr2()
Class: EigenvalueDecomposition - X-Ref
__construct(array $arg) X-Ref |
Constructor: Check for symmetry, then construct the eigenvalue decomposition |
getEigenvectors() X-Ref |
Return the eigenvector matrix |
getRealEigenvalues() X-Ref |
Return the real parts of the eigenvalues<br> d = real(diag(D)); |
getImagEigenvalues() X-Ref |
Return the imaginary parts of the eigenvalues <br> d = imag(diag(D)) |
getDiagonalEigenvalues() X-Ref |
Return the block diagonal eigenvalue matrix |
tred2() X-Ref |
Symmetric Householder reduction to tridiagonal form. |
tql2() X-Ref |
Symmetric tridiagonal QL algorithm. This is derived from the Algol procedures tql2, by Bowdler, Martin, Reinsch, and Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK. |
orthes() X-Ref |
Nonsymmetric reduction to Hessenberg form. This is derived from the Algol procedures orthes and ortran, by Martin and Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutines in EISPACK. |
cdiv($xr, $xi, $yr, $yi) X-Ref |
Performs complex division. param: int|float $xr param: int|float $xi param: int|float $yr param: int|float $yi |
hqr2() X-Ref |
Nonsymmetric reduction from Hessenberg to real Schur form. Code is derived from the Algol procedure hqr2, by Martin and Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK. |