Differences Between: [Versions 310 and 400] [Versions 310 and 401] [Versions 310 and 402] [Versions 310 and 403]
1 <?php 2 3 declare(strict_types=1); 4 5 namespace Phpml\Math\Statistic; 6 7 use Phpml\Exception\InvalidArgumentException; 8 9 /** 10 * Analysis of variance 11 * https://en.wikipedia.org/wiki/Analysis_of_variance 12 */ 13 final class ANOVA 14 { 15 /** 16 * The one-way ANOVA tests the null hypothesis that 2 or more groups have 17 * the same population mean. The test is applied to samples from two or 18 * more groups, possibly with differing sizes. 19 * 20 * @param array[] $samples - each row is class samples 21 * 22 * @return float[] 23 */ 24 public static function oneWayF(array $samples): array 25 { 26 $classes = count($samples); 27 if ($classes < 2) { 28 throw new InvalidArgumentException('The array must have at least 2 elements'); 29 } 30 31 $samplesPerClass = array_map(function (array $class): int { 32 return count($class); 33 }, $samples); 34 $allSamples = (int) array_sum($samplesPerClass); 35 $ssAllSamples = self::sumOfSquaresPerFeature($samples); 36 $sumSamples = self::sumOfFeaturesPerClass($samples); 37 $squareSumSamples = self::sumOfSquares($sumSamples); 38 $sumSamplesSquare = self::squaresSum($sumSamples); 39 $ssbn = self::calculateSsbn($samples, $sumSamplesSquare, $samplesPerClass, $squareSumSamples, $allSamples); 40 $sswn = self::calculateSswn($ssbn, $ssAllSamples, $squareSumSamples, $allSamples); 41 $dfbn = $classes - 1; 42 $dfwn = $allSamples - $classes; 43 44 $msb = array_map(function ($s) use ($dfbn) { 45 return $s / $dfbn; 46 }, $ssbn); 47 $msw = array_map(function ($s) use ($dfwn) { 48 return $s / $dfwn; 49 }, $sswn); 50 51 $f = []; 52 foreach ($msb as $index => $msbValue) { 53 $f[$index] = $msbValue / $msw[$index]; 54 } 55 56 return $f; 57 } 58 59 private static function sumOfSquaresPerFeature(array $samples): array 60 { 61 $sum = array_fill(0, count($samples[0][0]), 0); 62 foreach ($samples as $class) { 63 foreach ($class as $sample) { 64 foreach ($sample as $index => $feature) { 65 $sum[$index] += $feature ** 2; 66 } 67 } 68 } 69 70 return $sum; 71 } 72 73 private static function sumOfFeaturesPerClass(array $samples): array 74 { 75 return array_map(function (array $class) { 76 $sum = array_fill(0, count($class[0]), 0); 77 foreach ($class as $sample) { 78 foreach ($sample as $index => $feature) { 79 $sum[$index] += $feature; 80 } 81 } 82 83 return $sum; 84 }, $samples); 85 } 86 87 private static function sumOfSquares(array $sums): array 88 { 89 $squares = array_fill(0, count($sums[0]), 0); 90 foreach ($sums as $row) { 91 foreach ($row as $index => $sum) { 92 $squares[$index] += $sum; 93 } 94 } 95 96 return array_map(function ($sum) { 97 return $sum ** 2; 98 }, $squares); 99 } 100 101 private static function squaresSum(array $sums): array 102 { 103 foreach ($sums as &$row) { 104 foreach ($row as &$sum) { 105 $sum **= 2; 106 } 107 } 108 109 return $sums; 110 } 111 112 private static function calculateSsbn(array $samples, array $sumSamplesSquare, array $samplesPerClass, array $squareSumSamples, int $allSamples): array 113 { 114 $ssbn = array_fill(0, count($samples[0][0]), 0); 115 foreach ($sumSamplesSquare as $classIndex => $class) { 116 foreach ($class as $index => $feature) { 117 $ssbn[$index] += $feature / $samplesPerClass[$classIndex]; 118 } 119 } 120 121 foreach ($squareSumSamples as $index => $sum) { 122 $ssbn[$index] -= $sum / $allSamples; 123 } 124 125 return $ssbn; 126 } 127 128 private static function calculateSswn(array $ssbn, array $ssAllSamples, array $squareSumSamples, int $allSamples): array 129 { 130 $sswn = []; 131 foreach ($ssAllSamples as $index => $ss) { 132 $sswn[$index] = ($ss - $squareSumSamples[$index] / $allSamples) - $ssbn[$index]; 133 } 134 135 return $sswn; 136 } 137 }
title
Description
Body
title
Description
Body
title
Description
Body
title
Body