Differences Between: [Versions 310 and 311] [Versions 310 and 400] [Versions 310 and 401] [Versions 310 and 402] [Versions 310 and 403]
1 <?php 2 3 namespace PhpOffice\PhpSpreadsheet\Shared\Trend; 4 5 class PowerBestFit extends BestFit 6 { 7 /** 8 * Algorithm type to use for best-fit 9 * (Name of this Trend class). 10 * 11 * @var string 12 */ 13 protected $bestFitType = 'power'; 14 15 /** 16 * Return the Y-Value for a specified value of X. 17 * 18 * @param float $xValue X-Value 19 * 20 * @return float Y-Value 21 */ 22 public function getValueOfYForX($xValue) 23 { 24 return $this->getIntersect() * pow(($xValue - $this->xOffset), $this->getSlope()); 25 } 26 27 /** 28 * Return the X-Value for a specified value of Y. 29 * 30 * @param float $yValue Y-Value 31 * 32 * @return float X-Value 33 */ 34 public function getValueOfXForY($yValue) 35 { 36 return pow((($yValue + $this->yOffset) / $this->getIntersect()), (1 / $this->getSlope())); 37 } 38 39 /** 40 * Return the Equation of the best-fit line. 41 * 42 * @param int $dp Number of places of decimal precision to display 43 * 44 * @return string 45 */ 46 public function getEquation($dp = 0) 47 { 48 $slope = $this->getSlope($dp); 49 $intersect = $this->getIntersect($dp); 50 51 return 'Y = ' . $intersect . ' * X^' . $slope; 52 } 53 54 /** 55 * Return the Value of X where it intersects Y = 0. 56 * 57 * @param int $dp Number of places of decimal precision to display 58 * 59 * @return float 60 */ 61 public function getIntersect($dp = 0) 62 { 63 if ($dp != 0) { 64 return round(exp($this->intersect), $dp); 65 } 66 67 return exp($this->intersect); 68 } 69 70 /** 71 * Execute the regression and calculate the goodness of fit for a set of X and Y data values. 72 * 73 * @param float[] $yValues The set of Y-values for this regression 74 * @param float[] $xValues The set of X-values for this regression 75 * @param bool $const 76 */ 77 private function powerRegression($yValues, $xValues, $const) 78 { 79 foreach ($xValues as &$value) { 80 if ($value < 0.0) { 81 $value = 0 - log(abs($value)); 82 } elseif ($value > 0.0) { 83 $value = log($value); 84 } 85 } 86 unset($value); 87 foreach ($yValues as &$value) { 88 if ($value < 0.0) { 89 $value = 0 - log(abs($value)); 90 } elseif ($value > 0.0) { 91 $value = log($value); 92 } 93 } 94 unset($value); 95 96 $this->leastSquareFit($yValues, $xValues, $const); 97 } 98 99 /** 100 * Define the regression and calculate the goodness of fit for a set of X and Y data values. 101 * 102 * @param float[] $yValues The set of Y-values for this regression 103 * @param float[] $xValues The set of X-values for this regression 104 * @param bool $const 105 */ 106 public function __construct($yValues, $xValues = [], $const = true) 107 { 108 parent::__construct($yValues, $xValues); 109 110 if (!$this->error) { 111 $this->powerRegression($yValues, $xValues, $const); 112 } 113 } 114 }
title
Description
Body
title
Description
Body
title
Description
Body
title
Body