Differences Between: [Versions 311 and 400] [Versions 311 and 401] [Versions 311 and 402] [Versions 311 and 403]
1 <?php 2 3 declare(strict_types=1); 4 5 namespace Phpml\Classification\Linear; 6 7 use Phpml\Exception\InvalidArgumentException; 8 9 class Adaline extends Perceptron 10 { 11 /** 12 * Batch training is the default Adaline training algorithm 13 */ 14 public const BATCH_TRAINING = 1; 15 16 /** 17 * Online training: Stochastic gradient descent learning 18 */ 19 public const ONLINE_TRAINING = 2; 20 21 /** 22 * Training type may be either 'Batch' or 'Online' learning 23 * 24 * @var string|int 25 */ 26 protected $trainingType; 27 28 /** 29 * Initalize an Adaline (ADAptive LInear NEuron) classifier with given learning rate and maximum 30 * number of iterations used while training the classifier <br> 31 * 32 * Learning rate should be a float value between 0.0(exclusive) and 1.0 (inclusive) <br> 33 * Maximum number of iterations can be an integer value greater than 0 <br> 34 * If normalizeInputs is set to true, then every input given to the algorithm will be standardized 35 * by use of standard deviation and mean calculation 36 * 37 * @throws InvalidArgumentException 38 */ 39 public function __construct( 40 float $learningRate = 0.001, 41 int $maxIterations = 1000, 42 bool $normalizeInputs = true, 43 int $trainingType = self::BATCH_TRAINING 44 ) { 45 if (!in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING], true)) { 46 throw new InvalidArgumentException('Adaline can only be trained with batch and online/stochastic gradient descent algorithm'); 47 } 48 49 $this->trainingType = $trainingType; 50 51 parent::__construct($learningRate, $maxIterations, $normalizeInputs); 52 } 53 54 /** 55 * Adapts the weights with respect to given samples and targets 56 * by use of gradient descent learning rule 57 */ 58 protected function runTraining(array $samples, array $targets): void 59 { 60 // The cost function is the sum of squares 61 $callback = function ($weights, $sample, $target) { 62 $this->weights = $weights; 63 64 $output = $this->output($sample); 65 $gradient = $output - $target; 66 $error = $gradient ** 2; 67 68 return [$error, $gradient]; 69 }; 70 71 $isBatch = $this->trainingType == self::BATCH_TRAINING; 72 73 parent::runGradientDescent($samples, $targets, $callback, $isBatch); 74 } 75 }
title
Description
Body
title
Description
Body
title
Description
Body
title
Body