Differences Between: [Versions 311 and 400] [Versions 311 and 401] [Versions 311 and 402] [Versions 311 and 403]
(no description)
File Size: | 327 lines (8 kb) |
Included or required: | 0 times |
Referenced: | 0 times |
Includes or requires: | 0 files |
Matrix:: (23 methods):
__construct()
fromFlatArray()
toArray()
toScalar()
getRows()
getColumns()
getColumnValues()
getDeterminant()
isSquare()
transpose()
multiply()
divideByScalar()
multiplyByScalar()
add()
subtract()
inverse()
crossOut()
isSingular()
frobeniusNorm()
transposeArray()
dot()
_add()
getIdentity()
__construct(array $matrix, bool $validate = true) X-Ref |
fromFlatArray(array $array) X-Ref |
No description |
toArray() X-Ref |
No description |
toScalar() X-Ref |
No description |
getRows() X-Ref |
No description |
getColumns() X-Ref |
No description |
getColumnValues(int $column) X-Ref |
getDeterminant() X-Ref |
return: float|int |
isSquare() X-Ref |
No description |
transpose() X-Ref |
No description |
multiply(self $matrix) X-Ref |
No description |
divideByScalar($value) X-Ref |
param: float|int $value |
multiplyByScalar($value) X-Ref |
param: float|int $value |
add(self $other) X-Ref |
Element-wise addition of the matrix with another one |
subtract(self $other) X-Ref |
Element-wise subtracting of another matrix from this one |
inverse() X-Ref |
No description |
crossOut(int $row, int $column) X-Ref |
No description |
isSingular() X-Ref |
No description |
frobeniusNorm() X-Ref |
Frobenius norm (Hilbert–Schmidt norm, Euclidean norm) (‖A‖F) Square root of the sum of the square of all elements. https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm _____________ /ᵐ ⁿ ‖A‖F = √ Σ Σ |aᵢⱼ|² ᵢ₌₁ ᵢ₌₁ |
transposeArray(array $array) X-Ref |
Returns the transpose of given array |
dot(array $array1, array $array2) X-Ref |
Returns the dot product of two arrays<br> Matrix::dot(x, y) ==> x.y' |
_add(self $other, int $sign = 1) X-Ref |
Element-wise addition or substraction depending on the given sign parameter |
getIdentity() X-Ref |
Returns diagonal identity matrix of the same size of this matrix |