<?php
declare(strict_types=1);
namespace Phpml\Math\Statistic;
use Phpml\Exception\InvalidArgumentException;
/**
* Analysis of variance
* https://en.wikipedia.org/wiki/Analysis_of_variance
*/
final class ANOVA
{
/**
* The one-way ANOVA tests the null hypothesis that 2 or more groups have
* the same population mean. The test is applied to samples from two or
* more groups, possibly with differing sizes.
*
* @param array[] $samples - each row is class samples
*
* @return float[]
*/
public static function oneWayF(array $samples): array
{
$classes = count($samples);
if ($classes < 2) {
throw new InvalidArgumentException('The array must have at least 2 elements');
}
< $samplesPerClass = array_map(function (array $class): int {
> $samplesPerClass = array_map(static function (array $class): int {
return count($class);
}, $samples);
$allSamples = (int) array_sum($samplesPerClass);
$ssAllSamples = self::sumOfSquaresPerFeature($samples);
$sumSamples = self::sumOfFeaturesPerClass($samples);
$squareSumSamples = self::sumOfSquares($sumSamples);
$sumSamplesSquare = self::squaresSum($sumSamples);
$ssbn = self::calculateSsbn($samples, $sumSamplesSquare, $samplesPerClass, $squareSumSamples, $allSamples);
$sswn = self::calculateSswn($ssbn, $ssAllSamples, $squareSumSamples, $allSamples);
$dfbn = $classes - 1;
$dfwn = $allSamples - $classes;
< $msb = array_map(function ($s) use ($dfbn) {
> $msb = array_map(static function ($s) use ($dfbn) {
return $s / $dfbn;
}, $ssbn);
< $msw = array_map(function ($s) use ($dfwn) {
> $msw = array_map(static function ($s) use ($dfwn) {
> if ($dfwn === 0) {
> return 1;
> }
>
return $s / $dfwn;
}, $sswn);
$f = [];
foreach ($msb as $index => $msbValue) {
$f[$index] = $msbValue / $msw[$index];
}
return $f;
}
private static function sumOfSquaresPerFeature(array $samples): array
{
$sum = array_fill(0, count($samples[0][0]), 0);
foreach ($samples as $class) {
foreach ($class as $sample) {
foreach ($sample as $index => $feature) {
$sum[$index] += $feature ** 2;
}
}
}
return $sum;
}
private static function sumOfFeaturesPerClass(array $samples): array
{
< return array_map(function (array $class) {
> return array_map(static function (array $class): array {
$sum = array_fill(0, count($class[0]), 0);
foreach ($class as $sample) {
foreach ($sample as $index => $feature) {
$sum[$index] += $feature;
}
}
return $sum;
}, $samples);
}
private static function sumOfSquares(array $sums): array
{
$squares = array_fill(0, count($sums[0]), 0);
foreach ($sums as $row) {
foreach ($row as $index => $sum) {
$squares[$index] += $sum;
}
}
< return array_map(function ($sum) {
> return array_map(static function ($sum) {
return $sum ** 2;
}, $squares);
}
private static function squaresSum(array $sums): array
{
foreach ($sums as &$row) {
foreach ($row as &$sum) {
$sum **= 2;
}
}
return $sums;
}
private static function calculateSsbn(array $samples, array $sumSamplesSquare, array $samplesPerClass, array $squareSumSamples, int $allSamples): array
{
$ssbn = array_fill(0, count($samples[0][0]), 0);
foreach ($sumSamplesSquare as $classIndex => $class) {
foreach ($class as $index => $feature) {
$ssbn[$index] += $feature / $samplesPerClass[$classIndex];
}
}
foreach ($squareSumSamples as $index => $sum) {
$ssbn[$index] -= $sum / $allSamples;
}
return $ssbn;
}
private static function calculateSswn(array $ssbn, array $ssAllSamples, array $squareSumSamples, int $allSamples): array
{
$sswn = [];
foreach ($ssAllSamples as $index => $ss) {
$sswn[$index] = ($ss - $squareSumSamples[$index] / $allSamples) - $ssbn[$index];
}
return $sswn;
}
}