Differences Between: [Versions 311 and 400] [Versions 311 and 401] [Versions 311 and 402] [Versions 311 and 403]
1 <?php 2 3 declare(strict_types=1); 4 5 namespace Phpml\NeuralNetwork\Network; 6 7 use Phpml\Estimator; 8 use Phpml\Exception\InvalidArgumentException; 9 use Phpml\Helper\Predictable; 10 use Phpml\IncrementalEstimator; 11 use Phpml\NeuralNetwork\ActivationFunction; 12 use Phpml\NeuralNetwork\ActivationFunction\Sigmoid; 13 use Phpml\NeuralNetwork\Layer; 14 use Phpml\NeuralNetwork\Node\Bias; 15 use Phpml\NeuralNetwork\Node\Input; 16 use Phpml\NeuralNetwork\Node\Neuron; 17 use Phpml\NeuralNetwork\Node\Neuron\Synapse; 18 use Phpml\NeuralNetwork\Training\Backpropagation; 19 20 abstract class MultilayerPerceptron extends LayeredNetwork implements Estimator, IncrementalEstimator 21 { 22 use Predictable; 23 24 /** 25 * @var array 26 */ 27 protected $classes = []; 28 29 /** 30 * @var ActivationFunction|null 31 */ 32 protected $activationFunction; 33 34 /** 35 * @var Backpropagation 36 */ 37 protected $backpropagation; 38 39 /** 40 * @var int 41 */ 42 private $inputLayerFeatures; 43 44 /** 45 * @var array 46 */ 47 private $hiddenLayers = []; 48 49 /** 50 * @var float 51 */ 52 private $learningRate; 53 54 /** 55 * @var int 56 */ 57 private $iterations; 58 59 /** 60 * @throws InvalidArgumentException 61 */ 62 public function __construct(int $inputLayerFeatures, array $hiddenLayers, array $classes, int $iterations = 10000, ?ActivationFunction $activationFunction = null, float $learningRate = 1) 63 { 64 if (count($hiddenLayers) === 0) { 65 throw new InvalidArgumentException('Provide at least 1 hidden layer'); 66 } 67 68 if (count($classes) < 2) { 69 throw new InvalidArgumentException('Provide at least 2 different classes'); 70 } 71 72 if (count($classes) !== count(array_unique($classes))) { 73 throw new InvalidArgumentException('Classes must be unique'); 74 } 75 76 $this->classes = array_values($classes); 77 $this->iterations = $iterations; 78 $this->inputLayerFeatures = $inputLayerFeatures; 79 $this->hiddenLayers = $hiddenLayers; 80 $this->activationFunction = $activationFunction; 81 $this->learningRate = $learningRate; 82 83 $this->initNetwork(); 84 } 85 86 public function train(array $samples, array $targets): void 87 { 88 $this->reset(); 89 $this->initNetwork(); 90 $this->partialTrain($samples, $targets, $this->classes); 91 } 92 93 /** 94 * @throws InvalidArgumentException 95 */ 96 public function partialTrain(array $samples, array $targets, array $classes = []): void 97 { 98 if (count($classes) > 0 && array_values($classes) !== $this->classes) { 99 // We require the list of classes in the constructor. 100 throw new InvalidArgumentException( 101 'The provided classes don\'t match the classes provided in the constructor' 102 ); 103 } 104 105 for ($i = 0; $i < $this->iterations; ++$i) { 106 $this->trainSamples($samples, $targets); 107 } 108 } 109 110 public function setLearningRate(float $learningRate): void 111 { 112 $this->learningRate = $learningRate; 113 $this->backpropagation->setLearningRate($this->learningRate); 114 } 115 116 public function getOutput(): array 117 { 118 $result = []; 119 foreach ($this->getOutputLayer()->getNodes() as $i => $neuron) { 120 $result[$this->classes[$i]] = $neuron->getOutput(); 121 } 122 123 return $result; 124 } 125 126 /** 127 * @param mixed $target 128 */ 129 abstract protected function trainSample(array $sample, $target): void; 130 131 /** 132 * @return mixed 133 */ 134 abstract protected function predictSample(array $sample); 135 136 protected function reset(): void 137 { 138 $this->removeLayers(); 139 } 140 141 private function initNetwork(): void 142 { 143 $this->addInputLayer($this->inputLayerFeatures); 144 $this->addNeuronLayers($this->hiddenLayers, $this->activationFunction); 145 146 // Sigmoid function for the output layer as we want a value from 0 to 1. 147 $sigmoid = new Sigmoid(); 148 $this->addNeuronLayers([count($this->classes)], $sigmoid); 149 150 $this->addBiasNodes(); 151 $this->generateSynapses(); 152 153 $this->backpropagation = new Backpropagation($this->learningRate); 154 } 155 156 private function addInputLayer(int $nodes): void 157 { 158 $this->addLayer(new Layer($nodes, Input::class)); 159 } 160 161 private function addNeuronLayers(array $layers, ?ActivationFunction $defaultActivationFunction = null): void 162 { 163 foreach ($layers as $layer) { 164 if (is_array($layer)) { 165 $function = $layer[1] instanceof ActivationFunction ? $layer[1] : $defaultActivationFunction; 166 $this->addLayer(new Layer($layer[0], Neuron::class, $function)); 167 } elseif ($layer instanceof Layer) { 168 $this->addLayer($layer); 169 } else { 170 $this->addLayer(new Layer($layer, Neuron::class, $defaultActivationFunction)); 171 } 172 } 173 } 174 175 private function generateSynapses(): void 176 { 177 $layersNumber = count($this->layers) - 1; 178 for ($i = 0; $i < $layersNumber; ++$i) { 179 $currentLayer = $this->layers[$i]; 180 $nextLayer = $this->layers[$i + 1]; 181 $this->generateLayerSynapses($nextLayer, $currentLayer); 182 } 183 } 184 185 private function addBiasNodes(): void 186 { 187 $biasLayers = count($this->layers) - 1; 188 for ($i = 0; $i < $biasLayers; ++$i) { 189 $this->layers[$i]->addNode(new Bias()); 190 } 191 } 192 193 private function generateLayerSynapses(Layer $nextLayer, Layer $currentLayer): void 194 { 195 foreach ($nextLayer->getNodes() as $nextNeuron) { 196 if ($nextNeuron instanceof Neuron) { 197 $this->generateNeuronSynapses($currentLayer, $nextNeuron); 198 } 199 } 200 } 201 202 private function generateNeuronSynapses(Layer $currentLayer, Neuron $nextNeuron): void 203 { 204 foreach ($currentLayer->getNodes() as $currentNeuron) { 205 $nextNeuron->addSynapse(new Synapse($currentNeuron)); 206 } 207 } 208 209 private function trainSamples(array $samples, array $targets): void 210 { 211 foreach ($targets as $key => $target) { 212 $this->trainSample($samples[$key], $target); 213 } 214 } 215 }
title
Description
Body
title
Description
Body
title
Description
Body
title
Body