Search moodle.org's
Developer Documentation

See Release Notes

  • Bug fixes for general core bugs in 3.11.x will end 14 Nov 2022 (12 months plus 6 months extension).
  • Bug fixes for security issues in 3.11.x will end 13 Nov 2023 (18 months plus 12 months extension).
  • PHP version: minimum PHP 7.3.0 Note: minimum PHP version has increased since Moodle 3.10. PHP 7.4.x is supported too.
<?php

namespace PhpOffice\PhpSpreadsheet\Calculation;

use Complex\Complex;
< use Complex\Exception as ComplexException; < use PhpOffice\PhpSpreadsheet\Calculation\Engineering\ConvertUOM;
> use PhpOffice\PhpSpreadsheet\Calculation\Engineering\ComplexFunctions; > use PhpOffice\PhpSpreadsheet\Calculation\Engineering\ComplexOperations;
> /** class Engineering > * @deprecated 1.18.0 { > */
/** * EULER.
< */ < const EULER = 2.71828182845904523536; < < /** < * parseComplex. < * < * Parses a complex number into its real and imaginary parts, and an I or J suffix
*
< * @deprecated 2.0.0 No longer used by internal code. Please use the Complex\Complex class instead < * < * @param string $complexNumber The complex number < * < * @return mixed[] Indexed on "real", "imaginary" and "suffix"
> * @deprecated 1.18.0 > * Use Engineering\Constants::EULER instead > * @see Engineering\Constants::EULER
*/
< public static function parseComplex($complexNumber) < { < $complex = new Complex($complexNumber); < < return [ < 'real' => $complex->getReal(), < 'imaginary' => $complex->getImaginary(), < 'suffix' => $complex->getSuffix(), < ]; < } < < /** < * Formats a number base string value with leading zeroes. < * < * @param string $xVal The "number" to pad < * @param int $places The length that we want to pad this value < * < * @return string The padded "number" < */ < private static function nbrConversionFormat($xVal, $places) < { < if ($places !== null) { < if (is_numeric($places)) { < $places = (int) $places; < } else { < return Functions::VALUE(); < } < if ($places < 0) { < return Functions::NAN(); < } < if (strlen($xVal) <= $places) { < return substr(str_pad($xVal, $places, '0', STR_PAD_LEFT), -10); < } < < return Functions::NAN(); < } < < return substr($xVal, -10); < }
> public const EULER = 2.71828182845904523536;
/** * BESSELI. * * Returns the modified Bessel function In(x), which is equivalent to the Bessel function evaluated * for purely imaginary arguments * * Excel Function: * BESSELI(x,ord) *
> * @deprecated 1.17.0 * @param float $x The value at which to evaluate the function. > * Use the BESSELI() method in the Engineering\BesselI class instead * If x is nonnumeric, BESSELI returns the #VALUE! error value. > * @see Engineering\BesselI::BESSELI() * @param int $ord The order of the Bessel function. > *
* If ord is not an integer, it is truncated. * If $ord is nonnumeric, BESSELI returns the #VALUE! error value. * If $ord < 0, BESSELI returns the #NUM! error value. *
< * @return float|string Result, or a string containing an error
> * @return array|float|string Result, or a string containing an error
*/ public static function BESSELI($x, $ord) {
< $x = ($x === null) ? 0.0 : Functions::flattenSingleValue($x); < $ord = ($ord === null) ? 0.0 : Functions::flattenSingleValue($ord); < < if ((is_numeric($x)) && (is_numeric($ord))) { < $ord = floor($ord); < if ($ord < 0) { < return Functions::NAN(); < } < < if (abs($x) <= 30) { < $fResult = $fTerm = ($x / 2) ** $ord / MathTrig::FACT($ord); < $ordK = 1; < $fSqrX = ($x * $x) / 4; < do { < $fTerm *= $fSqrX; < $fTerm /= ($ordK * ($ordK + $ord)); < $fResult += $fTerm; < } while ((abs($fTerm) > 1e-12) && (++$ordK < 100)); < } else { < $f_2_PI = 2 * M_PI; < < $fXAbs = abs($x); < $fResult = exp($fXAbs) / sqrt($f_2_PI * $fXAbs); < if (($ord & 1) && ($x < 0)) { < $fResult = -$fResult; < } < } < < return (is_nan($fResult)) ? Functions::NAN() : $fResult; < } < < return Functions::VALUE();
> return Engineering\BesselI::BESSELI($x, $ord);
} /** * BESSELJ. * * Returns the Bessel function * * Excel Function: * BESSELJ(x,ord) *
> * @deprecated 1.17.0 * @param float $x The value at which to evaluate the function. > * Use the BESSELJ() method in the Engineering\BesselJ class instead * If x is nonnumeric, BESSELJ returns the #VALUE! error value. > * @see Engineering\BesselJ::BESSELJ() * @param int $ord The order of the Bessel function. If n is not an integer, it is truncated. > *
* If $ord is nonnumeric, BESSELJ returns the #VALUE! error value. * If $ord < 0, BESSELJ returns the #NUM! error value. *
< * @return float|string Result, or a string containing an error
> * @return array|float|string Result, or a string containing an error
*/ public static function BESSELJ($x, $ord) {
< $x = ($x === null) ? 0.0 : Functions::flattenSingleValue($x); < $ord = ($ord === null) ? 0.0 : Functions::flattenSingleValue($ord); < < if ((is_numeric($x)) && (is_numeric($ord))) { < $ord = floor($ord); < if ($ord < 0) { < return Functions::NAN(); < } < < $fResult = 0; < if (abs($x) <= 30) { < $fResult = $fTerm = ($x / 2) ** $ord / MathTrig::FACT($ord); < $ordK = 1; < $fSqrX = ($x * $x) / -4; < do { < $fTerm *= $fSqrX; < $fTerm /= ($ordK * ($ordK + $ord)); < $fResult += $fTerm; < } while ((abs($fTerm) > 1e-12) && (++$ordK < 100)); < } else { < $f_PI_DIV_2 = M_PI / 2; < $f_PI_DIV_4 = M_PI / 4; < < $fXAbs = abs($x); < $fResult = sqrt(Functions::M_2DIVPI / $fXAbs) * cos($fXAbs - $ord * $f_PI_DIV_2 - $f_PI_DIV_4); < if (($ord & 1) && ($x < 0)) { < $fResult = -$fResult; < } < } < < return (is_nan($fResult)) ? Functions::NAN() : $fResult; < } < < return Functions::VALUE(); < } < < private static function besselK0($fNum) < { < if ($fNum <= 2) { < $fNum2 = $fNum * 0.5; < $y = ($fNum2 * $fNum2); < $fRet = -log($fNum2) * self::BESSELI($fNum, 0) + < (-0.57721566 + $y * (0.42278420 + $y * (0.23069756 + $y * (0.3488590e-1 + $y * (0.262698e-2 + $y * < (0.10750e-3 + $y * 0.74e-5)))))); < } else { < $y = 2 / $fNum; < $fRet = exp(-$fNum) / sqrt($fNum) * < (1.25331414 + $y * (-0.7832358e-1 + $y * (0.2189568e-1 + $y * (-0.1062446e-1 + $y * < (0.587872e-2 + $y * (-0.251540e-2 + $y * 0.53208e-3)))))); < } < < return $fRet; < } < < private static function besselK1($fNum) < { < if ($fNum <= 2) { < $fNum2 = $fNum * 0.5; < $y = ($fNum2 * $fNum2); < $fRet = log($fNum2) * self::BESSELI($fNum, 1) + < (1 + $y * (0.15443144 + $y * (-0.67278579 + $y * (-0.18156897 + $y * (-0.1919402e-1 + $y * < (-0.110404e-2 + $y * (-0.4686e-4))))))) / $fNum; < } else { < $y = 2 / $fNum; < $fRet = exp(-$fNum) / sqrt($fNum) * < (1.25331414 + $y * (0.23498619 + $y * (-0.3655620e-1 + $y * (0.1504268e-1 + $y * (-0.780353e-2 + $y * < (0.325614e-2 + $y * (-0.68245e-3))))))); < } < < return $fRet;
> return Engineering\BesselJ::BESSELJ($x, $ord);
} /** * BESSELK. * * Returns the modified Bessel function Kn(x), which is equivalent to the Bessel functions evaluated * for purely imaginary arguments. * * Excel Function: * BESSELK(x,ord) *
> * @deprecated 1.17.0 * @param float $x The value at which to evaluate the function. > * Use the BESSELK() method in the Engineering\BesselK class instead * If x is nonnumeric, BESSELK returns the #VALUE! error value. > * @see Engineering\BesselK::BESSELK() * @param int $ord The order of the Bessel function. If n is not an integer, it is truncated. > *
* If $ord is nonnumeric, BESSELK returns the #VALUE! error value. * If $ord < 0, BESSELK returns the #NUM! error value. *
< * @return float|string Result, or a string containing an error
> * @return array|float|string Result, or a string containing an error
*/ public static function BESSELK($x, $ord) {
< $x = ($x === null) ? 0.0 : Functions::flattenSingleValue($x); < $ord = ($ord === null) ? 0.0 : Functions::flattenSingleValue($ord); < < if ((is_numeric($x)) && (is_numeric($ord))) { < if (($ord < 0) || ($x == 0.0)) { < return Functions::NAN(); < } < < switch (floor($ord)) { < case 0: < $fBk = self::besselK0($x); < < break; < case 1: < $fBk = self::besselK1($x); < < break; < default: < $fTox = 2 / $x; < $fBkm = self::besselK0($x); < $fBk = self::besselK1($x); < for ($n = 1; $n < $ord; ++$n) { < $fBkp = $fBkm + $n * $fTox * $fBk; < $fBkm = $fBk; < $fBk = $fBkp; < } < } < < return (is_nan($fBk)) ? Functions::NAN() : $fBk; < } < < return Functions::VALUE(); < } < < private static function besselY0($fNum) < { < if ($fNum < 8.0) { < $y = ($fNum * $fNum); < $f1 = -2957821389.0 + $y * (7062834065.0 + $y * (-512359803.6 + $y * (10879881.29 + $y * (-86327.92757 + $y * 228.4622733)))); < $f2 = 40076544269.0 + $y * (745249964.8 + $y * (7189466.438 + $y * (47447.26470 + $y * (226.1030244 + $y)))); < $fRet = $f1 / $f2 + 0.636619772 * self::BESSELJ($fNum, 0) * log($fNum); < } else { < $z = 8.0 / $fNum; < $y = ($z * $z); < $xx = $fNum - 0.785398164; < $f1 = 1 + $y * (-0.1098628627e-2 + $y * (0.2734510407e-4 + $y * (-0.2073370639e-5 + $y * 0.2093887211e-6))); < $f2 = -0.1562499995e-1 + $y * (0.1430488765e-3 + $y * (-0.6911147651e-5 + $y * (0.7621095161e-6 + $y * (-0.934945152e-7)))); < $fRet = sqrt(0.636619772 / $fNum) * (sin($xx) * $f1 + $z * cos($xx) * $f2); < } < < return $fRet; < } < < private static function besselY1($fNum) < { < if ($fNum < 8.0) { < $y = ($fNum * $fNum); < $f1 = $fNum * (-0.4900604943e13 + $y * (0.1275274390e13 + $y * (-0.5153438139e11 + $y * (0.7349264551e9 + $y * < (-0.4237922726e7 + $y * 0.8511937935e4))))); < $f2 = 0.2499580570e14 + $y * (0.4244419664e12 + $y * (0.3733650367e10 + $y * (0.2245904002e8 + $y * < (0.1020426050e6 + $y * (0.3549632885e3 + $y))))); < $fRet = $f1 / $f2 + 0.636619772 * (self::BESSELJ($fNum, 1) * log($fNum) - 1 / $fNum); < } else { < $fRet = sqrt(0.636619772 / $fNum) * sin($fNum - 2.356194491); < } < < return $fRet;
> return Engineering\BesselK::BESSELK($x, $ord);
} /** * BESSELY. * * Returns the Bessel function, which is also called the Weber function or the Neumann function. * * Excel Function: * BESSELY(x,ord) *
> * @deprecated 1.17.0 * @param float $x The value at which to evaluate the function. > * Use the BESSELY() method in the Engineering\BesselY class instead * If x is nonnumeric, BESSELK returns the #VALUE! error value. > * @see Engineering\BesselY::BESSELY() * @param int $ord The order of the Bessel function. If n is not an integer, it is truncated. > *
< * If x is nonnumeric, BESSELK returns the #VALUE! error value.
> * If x is nonnumeric, BESSELY returns the #VALUE! error value.
< * If $ord is nonnumeric, BESSELK returns the #VALUE! error value. < * If $ord < 0, BESSELK returns the #NUM! error value.
> * If $ord is nonnumeric, BESSELY returns the #VALUE! error value. > * If $ord < 0, BESSELY returns the #NUM! error value.
< * @return float|string Result, or a string containing an error
> * @return array|float|string Result, or a string containing an error
*/ public static function BESSELY($x, $ord) {
< $x = ($x === null) ? 0.0 : Functions::flattenSingleValue($x); < $ord = ($ord === null) ? 0.0 : Functions::flattenSingleValue($ord); < < if ((is_numeric($x)) && (is_numeric($ord))) { < if (($ord < 0) || ($x == 0.0)) { < return Functions::NAN(); < } < < switch (floor($ord)) { < case 0: < $fBy = self::besselY0($x); < < break; < case 1: < $fBy = self::besselY1($x); < < break; < default: < $fTox = 2 / $x; < $fBym = self::besselY0($x); < $fBy = self::besselY1($x); < for ($n = 1; $n < $ord; ++$n) { < $fByp = $n * $fTox * $fBy - $fBym; < $fBym = $fBy; < $fBy = $fByp; < } < } < < return (is_nan($fBy)) ? Functions::NAN() : $fBy; < } < < return Functions::VALUE();
> return Engineering\BesselY::BESSELY($x, $ord);
} /** * BINTODEC. * * Return a binary value as decimal. * * Excel Function: * BIN2DEC(x) *
< * @param string $x The binary number (as a string) that you want to convert. The number
> * @deprecated 1.17.0 > * Use the toDecimal() method in the Engineering\ConvertBinary class instead > * @see Engineering\ConvertBinary::toDecimal() > * > * @param mixed $x The binary number (as a string) that you want to convert. The number
* cannot contain more than 10 characters (10 bits). The most significant * bit of number is the sign bit. The remaining 9 bits are magnitude bits. * Negative numbers are represented using two's-complement notation. * If number is not a valid binary number, or if number contains more than * 10 characters (10 bits), BIN2DEC returns the #NUM! error value. *
< * @return string
> * @return array|string
*/ public static function BINTODEC($x) {
< $x = Functions::flattenSingleValue($x); < < if (is_bool($x)) { < if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { < $x = (int) $x; < } else { < return Functions::VALUE(); < } < } < if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { < $x = floor($x); < } < $x = (string) $x; < if (strlen($x) > preg_match_all('/[01]/', $x, $out)) { < return Functions::NAN(); < } < if (strlen($x) > 10) { < return Functions::NAN(); < } elseif (strlen($x) == 10) { < // Two's Complement < $x = substr($x, -9); < < return '-' . (512 - bindec($x)); < } < < return bindec($x);
> return Engineering\ConvertBinary::toDecimal($x);
} /** * BINTOHEX. * * Return a binary value as hex. * * Excel Function: * BIN2HEX(x[,places]) *
< * @param string $x The binary number (as a string) that you want to convert. The number
> * @deprecated 1.17.0 > * Use the toHex() method in the Engineering\ConvertBinary class instead > * @see Engineering\ConvertBinary::toHex() > * > * @param mixed $x The binary number (as a string) that you want to convert. The number
* cannot contain more than 10 characters (10 bits). The most significant * bit of number is the sign bit. The remaining 9 bits are magnitude bits. * Negative numbers are represented using two's-complement notation. * If number is not a valid binary number, or if number contains more than * 10 characters (10 bits), BIN2HEX returns the #NUM! error value.
< * @param int $places The number of characters to use. If places is omitted, BIN2HEX uses the
> * @param mixed $places The number of characters to use. If places is omitted, BIN2HEX uses the
* minimum number of characters necessary. Places is useful for padding the * return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, BIN2HEX returns the #VALUE! error value. * If places is negative, BIN2HEX returns the #NUM! error value. *
< * @return string
> * @return array|string
*/ public static function BINTOHEX($x, $places = null) {
< $x = Functions::flattenSingleValue($x); < $places = Functions::flattenSingleValue($places); < < // Argument X < if (is_bool($x)) { < if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { < $x = (int) $x; < } else { < return Functions::VALUE(); < } < } < if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { < $x = floor($x); < } < $x = (string) $x; < if (strlen($x) > preg_match_all('/[01]/', $x, $out)) { < return Functions::NAN(); < } < if (strlen($x) > 10) { < return Functions::NAN(); < } elseif (strlen($x) == 10) { < // Two's Complement < return str_repeat('F', 8) . substr(strtoupper(dechex(bindec(substr($x, -9)))), -2); < } < $hexVal = (string) strtoupper(dechex(bindec($x))); < < return self::nbrConversionFormat($hexVal, $places);
> return Engineering\ConvertBinary::toHex($x, $places);
} /** * BINTOOCT. * * Return a binary value as octal. * * Excel Function: * BIN2OCT(x[,places]) *
< * @param string $x The binary number (as a string) that you want to convert. The number
> * @deprecated 1.17.0 > * Use the toOctal() method in the Engineering\ConvertBinary class instead > * @see Engineering\ConvertBinary::toOctal() > * > * @param mixed $x The binary number (as a string) that you want to convert. The number
* cannot contain more than 10 characters (10 bits). The most significant * bit of number is the sign bit. The remaining 9 bits are magnitude bits. * Negative numbers are represented using two's-complement notation. * If number is not a valid binary number, or if number contains more than * 10 characters (10 bits), BIN2OCT returns the #NUM! error value.
< * @param int $places The number of characters to use. If places is omitted, BIN2OCT uses the
> * @param mixed $places The number of characters to use. If places is omitted, BIN2OCT uses the
* minimum number of characters necessary. Places is useful for padding the * return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, BIN2OCT returns the #VALUE! error value. * If places is negative, BIN2OCT returns the #NUM! error value. *
< * @return string
> * @return array|string
*/ public static function BINTOOCT($x, $places = null) {
< $x = Functions::flattenSingleValue($x); < $places = Functions::flattenSingleValue($places); < < if (is_bool($x)) { < if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { < $x = (int) $x; < } else { < return Functions::VALUE(); < } < } < if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { < $x = floor($x); < } < $x = (string) $x; < if (strlen($x) > preg_match_all('/[01]/', $x, $out)) { < return Functions::NAN(); < } < if (strlen($x) > 10) { < return Functions::NAN(); < } elseif (strlen($x) == 10) { < // Two's Complement < return str_repeat('7', 7) . substr(strtoupper(decoct(bindec(substr($x, -9)))), -3); < } < $octVal = (string) decoct(bindec($x)); < < return self::nbrConversionFormat($octVal, $places);
> return Engineering\ConvertBinary::toOctal($x, $places);
} /** * DECTOBIN. * * Return a decimal value as binary. * * Excel Function: * DEC2BIN(x[,places]) *
< * @param string $x The decimal integer you want to convert. If number is negative,
> * @deprecated 1.17.0 > * Use the toBinary() method in the Engineering\ConvertDecimal class instead > * @see Engineering\ConvertDecimal::toBinary() > * > * @param mixed $x The decimal integer you want to convert. If number is negative,
* valid place values are ignored and DEC2BIN returns a 10-character * (10-bit) binary number in which the most significant bit is the sign * bit. The remaining 9 bits are magnitude bits. Negative numbers are * represented using two's-complement notation. * If number < -512 or if number > 511, DEC2BIN returns the #NUM! error * value. * If number is nonnumeric, DEC2BIN returns the #VALUE! error value. * If DEC2BIN requires more than places characters, it returns the #NUM! * error value.
< * @param int $places The number of characters to use. If places is omitted, DEC2BIN uses
> * @param mixed $places The number of characters to use. If places is omitted, DEC2BIN uses
* the minimum number of characters necessary. Places is useful for * padding the return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, DEC2BIN returns the #VALUE! error value. * If places is zero or negative, DEC2BIN returns the #NUM! error value. *
< * @return string
> * @return array|string
*/ public static function DECTOBIN($x, $places = null) {
< $x = Functions::flattenSingleValue($x); < $places = Functions::flattenSingleValue($places); < < if (is_bool($x)) { < if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { < $x = (int) $x; < } else { < return Functions::VALUE(); < } < } < $x = (string) $x; < if (strlen($x) > preg_match_all('/[-0123456789.]/', $x, $out)) { < return Functions::VALUE(); < } < < $x = (string) floor($x); < if ($x < -512 || $x > 511) { < return Functions::NAN(); < } < < $r = decbin($x); < // Two's Complement < $r = substr($r, -10); < if (strlen($r) >= 11) { < return Functions::NAN(); < } < < return self::nbrConversionFormat($r, $places);
> return Engineering\ConvertDecimal::toBinary($x, $places);
} /** * DECTOHEX. * * Return a decimal value as hex. * * Excel Function: * DEC2HEX(x[,places]) *
< * @param string $x The decimal integer you want to convert. If number is negative,
> * @deprecated 1.17.0 > * Use the toHex() method in the Engineering\ConvertDecimal class instead > * @see Engineering\ConvertDecimal::toHex() > * > * @param mixed $x The decimal integer you want to convert. If number is negative,
* places is ignored and DEC2HEX returns a 10-character (40-bit) * hexadecimal number in which the most significant bit is the sign * bit. The remaining 39 bits are magnitude bits. Negative numbers * are represented using two's-complement notation. * If number < -549,755,813,888 or if number > 549,755,813,887, * DEC2HEX returns the #NUM! error value. * If number is nonnumeric, DEC2HEX returns the #VALUE! error value. * If DEC2HEX requires more than places characters, it returns the * #NUM! error value.
< * @param int $places The number of characters to use. If places is omitted, DEC2HEX uses
> * @param mixed $places The number of characters to use. If places is omitted, DEC2HEX uses
* the minimum number of characters necessary. Places is useful for * padding the return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, DEC2HEX returns the #VALUE! error value. * If places is zero or negative, DEC2HEX returns the #NUM! error value. *
< * @return string
> * @return array|string
*/ public static function DECTOHEX($x, $places = null) {
< $x = Functions::flattenSingleValue($x); < $places = Functions::flattenSingleValue($places); < < if (is_bool($x)) { < if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { < $x = (int) $x; < } else { < return Functions::VALUE(); < } < } < $x = (string) $x; < if (strlen($x) > preg_match_all('/[-0123456789.]/', $x, $out)) { < return Functions::VALUE(); < } < $x = (string) floor($x); < $r = strtoupper(dechex($x)); < if (strlen($r) == 8) { < // Two's Complement < $r = 'FF' . $r; < } < < return self::nbrConversionFormat($r, $places);
> return Engineering\ConvertDecimal::toHex($x, $places);
} /** * DECTOOCT. * * Return an decimal value as octal. * * Excel Function: * DEC2OCT(x[,places]) *
< * @param string $x The decimal integer you want to convert. If number is negative,
> * @deprecated 1.17.0 > * Use the toOctal() method in the Engineering\ConvertDecimal class instead > * @see Engineering\ConvertDecimal::toOctal() > * > * @param mixed $x The decimal integer you want to convert. If number is negative,
* places is ignored and DEC2OCT returns a 10-character (30-bit) * octal number in which the most significant bit is the sign bit. * The remaining 29 bits are magnitude bits. Negative numbers are * represented using two's-complement notation. * If number < -536,870,912 or if number > 536,870,911, DEC2OCT * returns the #NUM! error value. * If number is nonnumeric, DEC2OCT returns the #VALUE! error value. * If DEC2OCT requires more than places characters, it returns the * #NUM! error value.
< * @param int $places The number of characters to use. If places is omitted, DEC2OCT uses
> * @param mixed $places The number of characters to use. If places is omitted, DEC2OCT uses
* the minimum number of characters necessary. Places is useful for * padding the return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, DEC2OCT returns the #VALUE! error value. * If places is zero or negative, DEC2OCT returns the #NUM! error value. *
< * @return string
> * @return array|string
*/ public static function DECTOOCT($x, $places = null) {
< $xorig = $x; < $x = Functions::flattenSingleValue($x); < $places = Functions::flattenSingleValue($places); < < if (is_bool($x)) { < if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE) { < $x = (int) $x; < } else { < return Functions::VALUE(); < } < } < $x = (string) $x; < if (strlen($x) > preg_match_all('/[-0123456789.]/', $x, $out)) { < return Functions::VALUE(); < } < $x = (string) floor($x); < $r = decoct($x); < if (strlen($r) == 11) { < // Two's Complement < $r = substr($r, -10); < } < < return self::nbrConversionFormat($r, $places);
> return Engineering\ConvertDecimal::toOctal($x, $places);
} /** * HEXTOBIN. * * Return a hex value as binary. * * Excel Function: * HEX2BIN(x[,places]) *
< * @param string $x the hexadecimal number you want to convert.
> * @deprecated 1.17.0 > * Use the toBinary() method in the Engineering\ConvertHex class instead > * @see Engineering\ConvertHex::toBinary() > * > * @param mixed $x the hexadecimal number (as a string) that you want to convert.
* Number cannot contain more than 10 characters. * The most significant bit of number is the sign bit (40th bit from the right). * The remaining 9 bits are magnitude bits. * Negative numbers are represented using two's-complement notation. * If number is negative, HEX2BIN ignores places and returns a 10-character binary number. * If number is negative, it cannot be less than FFFFFFFE00, * and if number is positive, it cannot be greater than 1FF. * If number is not a valid hexadecimal number, HEX2BIN returns the #NUM! error value. * If HEX2BIN requires more than places characters, it returns the #NUM! error value.
< * @param int $places The number of characters to use. If places is omitted,
> * @param mixed $places The number of characters to use. If places is omitted,
* HEX2BIN uses the minimum number of characters necessary. Places * is useful for padding the return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, HEX2BIN returns the #VALUE! error value. * If places is negative, HEX2BIN returns the #NUM! error value. *
< * @return string
> * @return array|string
*/ public static function HEXTOBIN($x, $places = null) {
< $x = Functions::flattenSingleValue($x); < $places = Functions::flattenSingleValue($places); < < if (is_bool($x)) { < return Functions::VALUE(); < } < $x = (string) $x; < if (strlen($x) > preg_match_all('/[0123456789ABCDEF]/', strtoupper($x), $out)) { < return Functions::NAN(); < } < < return self::DECTOBIN(self::HEXTODEC($x), $places);
> return Engineering\ConvertHex::toBinary($x, $places);
} /** * HEXTODEC. * * Return a hex value as decimal. * * Excel Function: * HEX2DEC(x) *
< * @param string $x The hexadecimal number you want to convert. This number cannot
> * @deprecated 1.17.0 > * Use the toDecimal() method in the Engineering\ConvertHex class instead > * @see Engineering\ConvertHex::toDecimal() > * > * @param mixed $x The hexadecimal number (as a string) that you want to convert. This number cannot
* contain more than 10 characters (40 bits). The most significant * bit of number is the sign bit. The remaining 39 bits are magnitude * bits. Negative numbers are represented using two's-complement * notation. * If number is not a valid hexadecimal number, HEX2DEC returns the * #NUM! error value. *
< * @return string
> * @return array|string
*/ public static function HEXTODEC($x) {
< $x = Functions::flattenSingleValue($x); < < if (is_bool($x)) { < return Functions::VALUE(); < } < $x = (string) $x; < if (strlen($x) > preg_match_all('/[0123456789ABCDEF]/', strtoupper($x), $out)) { < return Functions::NAN(); < } < < if (strlen($x) > 10) { < return Functions::NAN(); < } < < $binX = ''; < foreach (str_split($x) as $char) { < $binX .= str_pad(base_convert($char, 16, 2), 4, '0', STR_PAD_LEFT); < } < if (strlen($binX) == 40 && $binX[0] == '1') { < for ($i = 0; $i < 40; ++$i) { < $binX[$i] = ($binX[$i] == '1' ? '0' : '1'); < } < < return (bindec($binX) + 1) * -1; < } < < return bindec($binX);
> return Engineering\ConvertHex::toDecimal($x);
} /** * HEXTOOCT. * * Return a hex value as octal. * * Excel Function: * HEX2OCT(x[,places]) *
< * @param string $x The hexadecimal number you want to convert. Number cannot
> * @deprecated 1.17.0 > * Use the toOctal() method in the Engineering\ConvertHex class instead > * @see Engineering\ConvertHex::toOctal() > * > * @param mixed $x The hexadecimal number (as a string) that you want to convert. Number cannot
* contain more than 10 characters. The most significant bit of * number is the sign bit. The remaining 39 bits are magnitude * bits. Negative numbers are represented using two's-complement * notation. * If number is negative, HEX2OCT ignores places and returns a * 10-character octal number. * If number is negative, it cannot be less than FFE0000000, and * if number is positive, it cannot be greater than 1FFFFFFF. * If number is not a valid hexadecimal number, HEX2OCT returns * the #NUM! error value. * If HEX2OCT requires more than places characters, it returns * the #NUM! error value.
< * @param int $places The number of characters to use. If places is omitted, HEX2OCT
> * @param mixed $places The number of characters to use. If places is omitted, HEX2OCT
* uses the minimum number of characters necessary. Places is * useful for padding the return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, HEX2OCT returns the #VALUE! error * value. * If places is negative, HEX2OCT returns the #NUM! error value. *
< * @return string
> * @return array|string
*/ public static function HEXTOOCT($x, $places = null) {
< $x = Functions::flattenSingleValue($x); < $places = Functions::flattenSingleValue($places); < < if (is_bool($x)) { < return Functions::VALUE(); < } < $x = (string) $x; < if (strlen($x) > preg_match_all('/[0123456789ABCDEF]/', strtoupper($x), $out)) { < return Functions::NAN(); < } < < $decimal = self::HEXTODEC($x); < if ($decimal < -536870912 || $decimal > 536870911) { < return Functions::NAN(); < } < < return self::DECTOOCT($decimal, $places);
> return Engineering\ConvertHex::toOctal($x, $places);
} /** * OCTTOBIN. * * Return an octal value as binary. * * Excel Function: * OCT2BIN(x[,places]) *
< * @param string $x The octal number you want to convert. Number may not
> * @deprecated 1.17.0 > * Use the toBinary() method in the Engineering\ConvertOctal class instead > * @see Engineering\ConvertOctal::toBinary() > * > * @param mixed $x The octal number you want to convert. Number may not
* contain more than 10 characters. The most significant * bit of number is the sign bit. The remaining 29 bits * are magnitude bits. Negative numbers are represented * using two's-complement notation. * If number is negative, OCT2BIN ignores places and returns * a 10-character binary number. * If number is negative, it cannot be less than 7777777000, * and if number is positive, it cannot be greater than 777. * If number is not a valid octal number, OCT2BIN returns * the #NUM! error value. * If OCT2BIN requires more than places characters, it * returns the #NUM! error value.
< * @param int $places The number of characters to use. If places is omitted,
> * @param mixed $places The number of characters to use. If places is omitted,
* OCT2BIN uses the minimum number of characters necessary. * Places is useful for padding the return value with * leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, OCT2BIN returns the #VALUE! * error value. * If places is negative, OCT2BIN returns the #NUM! error * value. *
< * @return string
> * @return array|string
*/ public static function OCTTOBIN($x, $places = null) {
< $x = Functions::flattenSingleValue($x); < $places = Functions::flattenSingleValue($places); < < if (is_bool($x)) { < return Functions::VALUE(); < } < $x = (string) $x; < if (preg_match_all('/[01234567]/', $x, $out) != strlen($x)) { < return Functions::NAN(); < } < < return self::DECTOBIN(self::OCTTODEC($x), $places);
> return Engineering\ConvertOctal::toBinary($x, $places);
} /** * OCTTODEC. * * Return an octal value as decimal. * * Excel Function: * OCT2DEC(x) *
< * @param string $x The octal number you want to convert. Number may not contain
> * @deprecated 1.17.0 > * Use the toDecimal() method in the Engineering\ConvertOctal class instead > * @see Engineering\ConvertOctal::toDecimal() > * > * @param mixed $x The octal number you want to convert. Number may not contain
* more than 10 octal characters (30 bits). The most significant * bit of number is the sign bit. The remaining 29 bits are * magnitude bits. Negative numbers are represented using * two's-complement notation. * If number is not a valid octal number, OCT2DEC returns the * #NUM! error value. *
< * @return string
> * @return array|string
*/ public static function OCTTODEC($x) {
< $x = Functions::flattenSingleValue($x); < < if (is_bool($x)) { < return Functions::VALUE(); < } < $x = (string) $x; < if (preg_match_all('/[01234567]/', $x, $out) != strlen($x)) { < return Functions::NAN(); < } < $binX = ''; < foreach (str_split($x) as $char) { < $binX .= str_pad(decbin((int) $char), 3, '0', STR_PAD_LEFT); < } < if (strlen($binX) == 30 && $binX[0] == '1') { < for ($i = 0; $i < 30; ++$i) { < $binX[$i] = ($binX[$i] == '1' ? '0' : '1'); < } < < return (bindec($binX) + 1) * -1; < } < < return bindec($binX);
> return Engineering\ConvertOctal::toDecimal($x);
} /** * OCTTOHEX. * * Return an octal value as hex. * * Excel Function: * OCT2HEX(x[,places]) *
< * @param string $x The octal number you want to convert. Number may not contain
> * @deprecated 1.17.0 > * Use the toHex() method in the Engineering\ConvertOctal class instead > * @see Engineering\ConvertOctal::toHex() > * > * @param mixed $x The octal number you want to convert. Number may not contain
* more than 10 octal characters (30 bits). The most significant * bit of number is the sign bit. The remaining 29 bits are * magnitude bits. Negative numbers are represented using * two's-complement notation. * If number is negative, OCT2HEX ignores places and returns a * 10-character hexadecimal number. * If number is not a valid octal number, OCT2HEX returns the * #NUM! error value. * If OCT2HEX requires more than places characters, it returns * the #NUM! error value.
< * @param int $places The number of characters to use. If places is omitted, OCT2HEX
> * @param mixed $places The number of characters to use. If places is omitted, OCT2HEX
* uses the minimum number of characters necessary. Places is useful * for padding the return value with leading 0s (zeros). * If places is not an integer, it is truncated. * If places is nonnumeric, OCT2HEX returns the #VALUE! error value. * If places is negative, OCT2HEX returns the #NUM! error value. *
< * @return string
> * @return array|string
*/ public static function OCTTOHEX($x, $places = null) {
< $x = Functions::flattenSingleValue($x); < $places = Functions::flattenSingleValue($places); < < if (is_bool($x)) { < return Functions::VALUE(); < } < $x = (string) $x; < if (preg_match_all('/[01234567]/', $x, $out) != strlen($x)) { < return Functions::NAN(); < } < $hexVal = strtoupper(dechex(self::OCTTODEC($x))); < < return self::nbrConversionFormat($hexVal, $places);
> return Engineering\ConvertOctal::toHex($x, $places);
} /** * COMPLEX. * * Converts real and imaginary coefficients into a complex number of the form x +/- yi or x +/- yj. * * Excel Function: * COMPLEX(realNumber,imaginary[,suffix]) *
< * @param float $realNumber the real coefficient of the complex number < * @param float $imaginary the imaginary coefficient of the complex number < * @param string $suffix The suffix for the imaginary component of the complex number.
> * @deprecated 1.18.0 > * Use the COMPLEX() method in the Engineering\Complex class instead > * @see Engineering\Complex::COMPLEX() > * > * @param array|float $realNumber the real coefficient of the complex number > * @param array|float $imaginary the imaginary coefficient of the complex number > * @param array|string $suffix The suffix for the imaginary component of the complex number.
* If omitted, the suffix is assumed to be "i". *
< * @return string
> * @return array|string
*/ public static function COMPLEX($realNumber = 0.0, $imaginary = 0.0, $suffix = 'i') {
< $realNumber = ($realNumber === null) ? 0.0 : Functions::flattenSingleValue($realNumber); < $imaginary = ($imaginary === null) ? 0.0 : Functions::flattenSingleValue($imaginary); < $suffix = ($suffix === null) ? 'i' : Functions::flattenSingleValue($suffix); < < if ( < ((is_numeric($realNumber)) && (is_numeric($imaginary))) && < (($suffix == 'i') || ($suffix == 'j') || ($suffix == '')) < ) { < $complex = new Complex($realNumber, $imaginary, $suffix); < < return (string) $complex; < } < < return Functions::VALUE();
> return Engineering\Complex::COMPLEX($realNumber, $imaginary, $suffix);
} /** * IMAGINARY. * * Returns the imaginary coefficient of a complex number in x + yi or x + yj text format. * * Excel Function: * IMAGINARY(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the imaginary > * Use the IMAGINARY() method in the Engineering\Complex class instead * coefficient > * @see Engineering\Complex::IMAGINARY() * > *
< * @return float
> * @return array|float|string
*/ public static function IMAGINARY($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (new Complex($complexNumber))->getImaginary();
> return Engineering\Complex::IMAGINARY($complexNumber);
} /** * IMREAL. * * Returns the real coefficient of a complex number in x + yi or x + yj text format. * * Excel Function: * IMREAL(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the real coefficient > * Use the IMREAL() method in the Engineering\Complex class instead * > * @see Engineering\Complex::IMREAL() * @return float > *
< * @return float
> * @return array|float|string
public static function IMREAL($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (new Complex($complexNumber))->getReal();
> return Engineering\Complex::IMREAL($complexNumber);
} /** * IMABS. * * Returns the absolute value (modulus) of a complex number in x + yi or x + yj text format. * * Excel Function: * IMABS(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the absolute value > * Use the IMABS() method in the Engineering\ComplexFunctions class instead * > * @see ComplexFunctions::IMABS() * @return float > *
< * @return float
> * @return array|float|string
public static function IMABS($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (new Complex($complexNumber))->abs();
> return ComplexFunctions::IMABS($complexNumber);
} /** * IMARGUMENT. * * Returns the argument theta of a complex number, i.e. the angle in radians from the real * axis to the representation of the number in polar coordinates. * * Excel Function: * IMARGUMENT(complexNumber) *
< * @param string $complexNumber the complex number for which you want the argument theta
> * @deprecated 1.18.0 > * Use the IMARGUMENT() method in the Engineering\ComplexFunctions class instead > * @see ComplexFunctions::IMARGUMENT()
*
< * @return float|string
> * @param array|string $complexNumber the complex number for which you want the argument theta > * > * @return array|float|string
*/ public static function IMARGUMENT($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < $complex = new Complex($complexNumber); < if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) { < return Functions::DIV0(); < } < < return $complex->argument();
> return ComplexFunctions::IMARGUMENT($complexNumber);
} /** * IMCONJUGATE. * * Returns the complex conjugate of a complex number in x + yi or x + yj text format. * * Excel Function: * IMCONJUGATE(complexNumber) *
< * @param string $complexNumber the complex number for which you want the conjugate
> * @deprecated 1.18.0 > * Use the IMCONJUGATE() method in the Engineering\ComplexFunctions class instead > * @see ComplexFunctions::IMCONJUGATE()
*
< * @return string
> * @param array|string $complexNumber the complex number for which you want the conjugate > * > * @return array|string
*/ public static function IMCONJUGATE($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (string) (new Complex($complexNumber))->conjugate();
> return ComplexFunctions::IMCONJUGATE($complexNumber);
} /** * IMCOS. * * Returns the cosine of a complex number in x + yi or x + yj text format. * * Excel Function: * IMCOS(complexNumber) *
< * @param string $complexNumber the complex number for which you want the cosine
> * @deprecated 1.18.0 > * Use the IMCOS() method in the Engineering\ComplexFunctions class instead > * @see ComplexFunctions::IMCOS()
*
< * @return float|string
> * @param array|string $complexNumber the complex number for which you want the cosine > * > * @return array|float|string
*/ public static function IMCOS($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (string) (new Complex($complexNumber))->cos();
> return ComplexFunctions::IMCOS($complexNumber);
} /** * IMCOSH. * * Returns the hyperbolic cosine of a complex number in x + yi or x + yj text format. * * Excel Function: * IMCOSH(complexNumber) *
< * @param string $complexNumber the complex number for which you want the hyperbolic cosine
> * @deprecated 1.18.0 > * Use the IMCOSH() method in the Engineering\ComplexFunctions class instead > * @see ComplexFunctions::IMCOSH() > * > * @param array|string $complexNumber the complex number for which you want the hyperbolic cosine
*
< * @return float|string
> * @return array|float|string
*/ public static function IMCOSH($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (string) (new Complex($complexNumber))->cosh();
> return ComplexFunctions::IMCOSH($complexNumber);
} /** * IMCOT. * * Returns the cotangent of a complex number in x + yi or x + yj text format. * * Excel Function: * IMCOT(complexNumber) *
< * @param string $complexNumber the complex number for which you want the cotangent
> * @deprecated 1.18.0 > * Use the IMCOT() method in the Engineering\ComplexFunctions class instead > * @see ComplexFunctions::IMCOT() > * > * @param array|string $complexNumber the complex number for which you want the cotangent
*
< * @return float|string
> * @return array|float|string
*/ public static function IMCOT($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (string) (new Complex($complexNumber))->cot();
> return ComplexFunctions::IMCOT($complexNumber);
} /** * IMCSC. * * Returns the cosecant of a complex number in x + yi or x + yj text format. * * Excel Function: * IMCSC(complexNumber) *
< * @param string $complexNumber the complex number for which you want the cosecant
> * @deprecated 1.18.0 > * Use the IMCSC() method in the Engineering\ComplexFunctions class instead > * @see ComplexFunctions::IMCSC()
*
< * @return float|string
> * @param array|string $complexNumber the complex number for which you want the cosecant > * > * @return array|float|string
*/ public static function IMCSC($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (string) (new Complex($complexNumber))->csc();
> return ComplexFunctions::IMCSC($complexNumber);
} /** * IMCSCH. * * Returns the hyperbolic cosecant of a complex number in x + yi or x + yj text format. * * Excel Function: * IMCSCH(complexNumber) *
< * @param string $complexNumber the complex number for which you want the hyperbolic cosecant
> * @deprecated 1.18.0 > * Use the IMCSCH() method in the Engineering\ComplexFunctions class instead > * @see ComplexFunctions::IMCSCH() > * > * @param array|string $complexNumber the complex number for which you want the hyperbolic cosecant
*
< * @return float|string
> * @return array|float|string
*/ public static function IMCSCH($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (string) (new Complex($complexNumber))->csch();
> return ComplexFunctions::IMCSCH($complexNumber);
} /** * IMSIN. * * Returns the sine of a complex number in x + yi or x + yj text format. * * Excel Function: * IMSIN(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the sine > * Use the IMSIN() method in the Engineering\ComplexFunctions class instead * > * @see ComplexFunctions::IMSIN() * @return float|string > *
< * @return float|string
> * @return array|float|string
public static function IMSIN($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (string) (new Complex($complexNumber))->sin();
> return ComplexFunctions::IMSIN($complexNumber);
} /** * IMSINH. * * Returns the hyperbolic sine of a complex number in x + yi or x + yj text format. * * Excel Function: * IMSINH(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the hyperbolic sine > * Use the IMSINH() method in the Engineering\ComplexFunctions class instead * > * @see ComplexFunctions::IMSINH() * @return float|string > *
< * @return float|string
> * @return array|float|string
public static function IMSINH($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (string) (new Complex($complexNumber))->sinh();
> return ComplexFunctions::IMSINH($complexNumber);
} /** * IMSEC. * * Returns the secant of a complex number in x + yi or x + yj text format. * * Excel Function: * IMSEC(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the secant > * Use the IMSEC() method in the Engineering\ComplexFunctions class instead * > * @see ComplexFunctions::IMSEC() * @return float|string > *
< * @return float|string
> * @return array|float|string
public static function IMSEC($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (string) (new Complex($complexNumber))->sec();
> return ComplexFunctions::IMSEC($complexNumber);
} /** * IMSECH. * * Returns the hyperbolic secant of a complex number in x + yi or x + yj text format. * * Excel Function: * IMSECH(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the hyperbolic secant > * Use the IMSECH() method in the Engineering\ComplexFunctions class instead * > * @see ComplexFunctions::IMSECH() * @return float|string > *
< * @return float|string
> * @return array|float|string
public static function IMSECH($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (string) (new Complex($complexNumber))->sech();
> return ComplexFunctions::IMSECH($complexNumber);
} /** * IMTAN. * * Returns the tangent of a complex number in x + yi or x + yj text format. * * Excel Function: * IMTAN(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the tangent > * Use the IMTAN() method in the Engineering\ComplexFunctions class instead * > * @see ComplexFunctions::IMTAN() * @return float|string > *
< * @return float|string
> * @return array|float|string
public static function IMTAN($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (string) (new Complex($complexNumber))->tan();
> return ComplexFunctions::IMTAN($complexNumber);
} /** * IMSQRT. * * Returns the square root of a complex number in x + yi or x + yj text format. * * Excel Function: * IMSQRT(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the square root > * Use the IMSQRT() method in the Engineering\ComplexFunctions class instead * > * @see ComplexFunctions::IMSQRT() * @return string > *
< * @return string
> * @return array|string
public static function IMSQRT($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < $theta = self::IMARGUMENT($complexNumber); < if ($theta === Functions::DIV0()) { < return '0'; < } < < return (string) (new Complex($complexNumber))->sqrt();
> return ComplexFunctions::IMSQRT($complexNumber);
} /** * IMLN. * * Returns the natural logarithm of a complex number in x + yi or x + yj text format. * * Excel Function: * IMLN(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the natural logarithm > * Use the IMLN() method in the Engineering\ComplexFunctions class instead * > * @see ComplexFunctions::IMLN() * @return string > *
< * @return string
> * @return array|string
public static function IMLN($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < $complex = new Complex($complexNumber); < if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) { < return Functions::NAN(); < } < < return (string) (new Complex($complexNumber))->ln();
> return ComplexFunctions::IMLN($complexNumber);
} /** * IMLOG10. * * Returns the common logarithm (base 10) of a complex number in x + yi or x + yj text format. * * Excel Function: * IMLOG10(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the common logarithm > * Use the IMLOG10() method in the Engineering\ComplexFunctions class instead * > * @see ComplexFunctions::IMLOG10() * @return string > *
< * @return string
> * @return array|string
public static function IMLOG10($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < $complex = new Complex($complexNumber); < if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) { < return Functions::NAN(); < } < < return (string) (new Complex($complexNumber))->log10();
> return ComplexFunctions::IMLOG10($complexNumber);
} /** * IMLOG2. * * Returns the base-2 logarithm of a complex number in x + yi or x + yj text format. * * Excel Function: * IMLOG2(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the base-2 logarithm > * Use the IMLOG2() method in the Engineering\ComplexFunctions class instead * > * @see ComplexFunctions::IMLOG2() * @return string > *
< * @return string
> * @return array|string
public static function IMLOG2($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < $complex = new Complex($complexNumber); < if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) { < return Functions::NAN(); < } < < return (string) (new Complex($complexNumber))->log2();
> return ComplexFunctions::IMLOG2($complexNumber);
} /** * IMEXP. * * Returns the exponential of a complex number in x + yi or x + yj text format. * * Excel Function: * IMEXP(complexNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number for which you want the exponential > * Use the IMEXP() method in the Engineering\ComplexFunctions class instead * > * @see ComplexFunctions::IMEXP() * @return string > *
< * @return string
> * @return array|string
public static function IMEXP($complexNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < < return (string) (new Complex($complexNumber))->exp();
> return ComplexFunctions::IMEXP($complexNumber);
} /** * IMPOWER. * * Returns a complex number in x + yi or x + yj text format raised to a power. * * Excel Function: * IMPOWER(complexNumber,realNumber) *
> * @deprecated 1.18.0 * @param string $complexNumber the complex number you want to raise to a power > * Use the IMPOWER() method in the Engineering\ComplexFunctions class instead * @param float $realNumber the power to which you want to raise the complex number > * @see ComplexFunctions::IMPOWER() * > *
< * @return string
> * @return array|string
*/ public static function IMPOWER($complexNumber, $realNumber) {
< $complexNumber = Functions::flattenSingleValue($complexNumber); < $realNumber = Functions::flattenSingleValue($realNumber); < < if (!is_numeric($realNumber)) { < return Functions::VALUE(); < } < < return (string) (new Complex($complexNumber))->pow($realNumber);
> return ComplexFunctions::IMPOWER($complexNumber, $realNumber);
} /** * IMDIV. * * Returns the quotient of two complex numbers in x + yi or x + yj text format. * * Excel Function: * IMDIV(complexDividend,complexDivisor) *
> * @deprecated 1.18.0 * @param string $complexDividend the complex numerator or dividend > * Use the IMDIV() method in the Engineering\ComplexOperations class instead * @param string $complexDivisor the complex denominator or divisor > * @see ComplexOperations::IMDIV() * > *
< * @return string
> * @return array|string
*/ public static function IMDIV($complexDividend, $complexDivisor) {
< $complexDividend = Functions::flattenSingleValue($complexDividend); < $complexDivisor = Functions::flattenSingleValue($complexDivisor); < < try { < return (string) (new Complex($complexDividend))->divideby(new Complex($complexDivisor)); < } catch (ComplexException $e) { < return Functions::NAN(); < }
> return ComplexOperations::IMDIV($complexDividend, $complexDivisor);
} /** * IMSUB. * * Returns the difference of two complex numbers in x + yi or x + yj text format. * * Excel Function: * IMSUB(complexNumber1,complexNumber2) *
> * @deprecated 1.18.0 * @param string $complexNumber1 the complex number from which to subtract complexNumber2 > * Use the IMSUB() method in the Engineering\ComplexOperations class instead * @param string $complexNumber2 the complex number to subtract from complexNumber1 > * @see ComplexOperations::IMSUB() * > *
< * @return string
> * @return array|string
*/ public static function IMSUB($complexNumber1, $complexNumber2) {
< $complexNumber1 = Functions::flattenSingleValue($complexNumber1); < $complexNumber2 = Functions::flattenSingleValue($complexNumber2); < < try { < return (string) (new Complex($complexNumber1))->subtract(new Complex($complexNumber2)); < } catch (ComplexException $e) { < return Functions::NAN(); < }
> return ComplexOperations::IMSUB($complexNumber1, $complexNumber2);
} /** * IMSUM. * * Returns the sum of two or more complex numbers in x + yi or x + yj text format. * * Excel Function: * IMSUM(complexNumber[,complexNumber[,...]]) *
> * @deprecated 1.18.0 * @param string ...$complexNumbers Series of complex numbers to add > * Use the IMSUM() method in the Engineering\ComplexOperations class instead * > * @see ComplexOperations::IMSUM() * @return string > *
*/ public static function IMSUM(...$complexNumbers) {
< // Return value < $returnValue = new Complex(0.0); < $aArgs = Functions::flattenArray($complexNumbers); < < try { < // Loop through the arguments < foreach ($aArgs as $complex) { < $returnValue = $returnValue->add(new Complex($complex)); < } < } catch (ComplexException $e) { < return Functions::NAN(); < } < < return (string) $returnValue;
> return ComplexOperations::IMSUM(...$complexNumbers);
} /** * IMPRODUCT. * * Returns the product of two or more complex numbers in x + yi or x + yj text format. * * Excel Function: * IMPRODUCT(complexNumber[,complexNumber[,...]]) *
> * @deprecated 1.18.0 * @param string ...$complexNumbers Series of complex numbers to multiply > * Use the IMPRODUCT() method in the Engineering\ComplexOperations class instead * > * @see ComplexOperations::IMPRODUCT() * @return string > *
*/ public static function IMPRODUCT(...$complexNumbers) {
< // Return value < $returnValue = new Complex(1.0); < $aArgs = Functions::flattenArray($complexNumbers); < < try { < // Loop through the arguments < foreach ($aArgs as $complex) { < $returnValue = $returnValue->multiply(new Complex($complex)); < } < } catch (ComplexException $e) { < return Functions::NAN(); < } < < return (string) $returnValue;
> return ComplexOperations::IMPRODUCT(...$complexNumbers);
} /** * DELTA. * * Tests whether two values are equal. Returns 1 if number1 = number2; returns 0 otherwise. * Use this function to filter a set of values. For example, by summing several DELTA * functions you calculate the count of equal pairs. This function is also known as the * Kronecker Delta function. * * Excel Function: * DELTA(a[,b]) *
> * @deprecated 1.17.0 * @param float $a the first number > * Use the DELTA() method in the Engineering\Compare class instead * @param float $b The second number. If omitted, b is assumed to be zero. > * @see Engineering\Compare::DELTA() * > *
< * @return int
> * @return array|int|string (string in the event of an error)
*/ public static function DELTA($a, $b = 0) {
< $a = Functions::flattenSingleValue($a); < $b = Functions::flattenSingleValue($b); < < return (int) ($a == $b);
> return Engineering\Compare::DELTA($a, $b);
} /** * GESTEP. * * Excel Function: * GESTEP(number[,step]) * * Returns 1 if number >= step; returns 0 (zero) otherwise * Use this function to filter a set of values. For example, by summing several GESTEP * functions you calculate the count of values that exceed a threshold. *
> * @deprecated 1.17.0 * @param float $number the value to test against step > * Use the GESTEP() method in the Engineering\Compare class instead * @param float $step The threshold value. > * @see Engineering\Compare::GESTEP() * If you omit a value for step, GESTEP uses zero. > *
< * @param float $step The threshold value. < * If you omit a value for step, GESTEP uses zero.
> * @param float $step The threshold value. If you omit a value for step, GESTEP uses zero.
< * @return int
> * @return array|int|string (string in the event of an error)
public static function GESTEP($number, $step = 0) {
< $number = Functions::flattenSingleValue($number); < $step = Functions::flattenSingleValue($step); < < return (int) ($number >= $step); < } < < // < // Private method to calculate the erf value < // < private static $twoSqrtPi = 1.128379167095512574; < < public static function erfVal($x) < { < if (abs($x) > 2.2) { < return 1 - self::erfcVal($x); < } < $sum = $term = $x; < $xsqr = ($x * $x); < $j = 1; < do { < $term *= $xsqr / $j; < $sum -= $term / (2 * $j + 1); < ++$j; < $term *= $xsqr / $j; < $sum += $term / (2 * $j + 1); < ++$j; < if ($sum == 0.0) { < break; < } < } while (abs($term / $sum) > Functions::PRECISION); < < return self::$twoSqrtPi * $sum; < } < < /** < * Validate arguments passed to the bitwise functions. < * < * @param mixed $value < * < * @return int < */ < private static function validateBitwiseArgument($value) < { < $value = Functions::flattenSingleValue($value); < < if (is_int($value)) { < return $value; < } elseif (is_numeric($value)) { < if ($value == (int) ($value)) { < $value = (int) ($value); < if (($value > 2 ** 48 - 1) || ($value < 0)) { < throw new Exception(Functions::NAN()); < } < < return $value; < } < < throw new Exception(Functions::NAN()); < } < < throw new Exception(Functions::VALUE());
> return Engineering\Compare::GESTEP($number, $step);
} /** * BITAND. * * Returns the bitwise AND of two integer values. * * Excel Function: * BITAND(number1, number2) *
> * @deprecated 1.17.0 * @param int $number1 > * Use the BITAND() method in the Engineering\BitWise class instead * @param int $number2 > * @see Engineering\BitWise::BITAND() * > *
< * @return int|string
> * @return array|int|string
*/ public static function BITAND($number1, $number2) {
< try { < $number1 = self::validateBitwiseArgument($number1); < $number2 = self::validateBitwiseArgument($number2); < } catch (Exception $e) { < return $e->getMessage(); < } < < return $number1 & $number2;
> return Engineering\BitWise::BITAND($number1, $number2);
} /** * BITOR. * * Returns the bitwise OR of two integer values. * * Excel Function: * BITOR(number1, number2) *
> * @deprecated 1.17.0 * @param int $number1 > * Use the BITOR() method in the Engineering\BitWise class instead * @param int $number2 > * @see Engineering\BitWise::BITOR() * > *
< * @return int|string
> * @return array|int|string
*/ public static function BITOR($number1, $number2) {
< try { < $number1 = self::validateBitwiseArgument($number1); < $number2 = self::validateBitwiseArgument($number2); < } catch (Exception $e) { < return $e->getMessage(); < } < < return $number1 | $number2;
> return Engineering\BitWise::BITOR($number1, $number2);
} /** * BITXOR. * * Returns the bitwise XOR of two integer values. * * Excel Function: * BITXOR(number1, number2) *
> * @deprecated 1.17.0 * @param int $number1 > * Use the BITXOR() method in the Engineering\BitWise class instead * @param int $number2 > * @see Engineering\BitWise::BITXOR() * > *
< * @return int|string
> * @return array|int|string
*/ public static function BITXOR($number1, $number2) {
< try { < $number1 = self::validateBitwiseArgument($number1); < $number2 = self::validateBitwiseArgument($number2); < } catch (Exception $e) { < return $e->getMessage(); < } < < return $number1 ^ $number2;
> return Engineering\BitWise::BITXOR($number1, $number2);
} /** * BITLSHIFT. * * Returns the number value shifted left by shift_amount bits. * * Excel Function: * BITLSHIFT(number, shift_amount) *
> * @deprecated 1.17.0 * @param int $number > * Use the BITLSHIFT() method in the Engineering\BitWise class instead * @param int $shiftAmount > * @see Engineering\BitWise::BITLSHIFT() * > *
< * @return int|string
> * @return array|float|int|string
*/ public static function BITLSHIFT($number, $shiftAmount) {
< try { < $number = self::validateBitwiseArgument($number); < } catch (Exception $e) { < return $e->getMessage(); < } < < $shiftAmount = Functions::flattenSingleValue($shiftAmount); < < $result = $number << $shiftAmount; < if ($result > 2 ** 48 - 1) { < return Functions::NAN(); < } < < return $result;
> return Engineering\BitWise::BITLSHIFT($number, $shiftAmount);
} /** * BITRSHIFT. * * Returns the number value shifted right by shift_amount bits. * * Excel Function: * BITRSHIFT(number, shift_amount) *
> * @deprecated 1.17.0 * @param int $number > * Use the BITRSHIFT() method in the Engineering\BitWise class instead * @param int $shiftAmount > * @see Engineering\BitWise::BITRSHIFT() * > *
< * @return int|string
> * @return array|float|int|string
*/ public static function BITRSHIFT($number, $shiftAmount) {
< try { < $number = self::validateBitwiseArgument($number); < } catch (Exception $e) { < return $e->getMessage(); < } < < $shiftAmount = Functions::flattenSingleValue($shiftAmount); < < return $number >> $shiftAmount;
> return Engineering\BitWise::BITRSHIFT($number, $shiftAmount);
} /** * ERF. * * Returns the error function integrated between the lower and upper bound arguments. * * Note: In Excel 2007 or earlier, if you input a negative value for the upper or lower bound arguments, * the function would return a #NUM! error. However, in Excel 2010, the function algorithm was * improved, so that it can now calculate the function for both positive and negative ranges. * PhpSpreadsheet follows Excel 2010 behaviour, and accepts negative arguments. * * Excel Function: * ERF(lower[,upper]) *
> * @deprecated 1.17.0 * @param float $lower lower bound for integrating ERF > * Use the ERF() method in the Engineering\Erf class instead * @param float $upper upper bound for integrating ERF. > * @see Engineering\Erf::ERF() * If omitted, ERF integrates between zero and lower_limit > *
*
< * @return float|string
> * @return array|float|string
*/ public static function ERF($lower, $upper = null) {
< $lower = Functions::flattenSingleValue($lower); < $upper = Functions::flattenSingleValue($upper); < < if (is_numeric($lower)) { < if ($upper === null) { < return self::erfVal($lower); < } < if (is_numeric($upper)) { < return self::erfVal($upper) - self::erfVal($lower); < } < } < < return Functions::VALUE();
> return Engineering\Erf::ERF($lower, $upper);
} /** * ERFPRECISE. * * Returns the error function integrated between the lower and upper bound arguments. * * Excel Function: * ERF.PRECISE(limit) *
> * @deprecated 1.17.0 * @param float $limit bound for integrating ERF > * Use the ERFPRECISE() method in the Engineering\Erf class instead * > * @see Engineering\Erf::ERFPRECISE() * @return float|string > *
< * @return float|string
> * @return array|float|string
public static function ERFPRECISE($limit) {
< $limit = Functions::flattenSingleValue($limit); < < return self::ERF($limit); < } < < // < // Private method to calculate the erfc value < // < private static $oneSqrtPi = 0.564189583547756287; < < private static function erfcVal($x) < { < if (abs($x) < 2.2) { < return 1 - self::erfVal($x); < } < if ($x < 0) { < return 2 - self::ERFC(-$x); < } < $a = $n = 1; < $b = $c = $x; < $d = ($x * $x) + 0.5; < $q1 = $q2 = $b / $d; < $t = 0; < do { < $t = $a * $n + $b * $x; < $a = $b; < $b = $t; < $t = $c * $n + $d * $x; < $c = $d; < $d = $t; < $n += 0.5; < $q1 = $q2; < $q2 = $b / $d; < } while ((abs($q1 - $q2) / $q2) > Functions::PRECISION); < < return self::$oneSqrtPi * exp(-$x * $x) * $q2;
> return Engineering\Erf::ERFPRECISE($limit);
} /** * ERFC. * * Returns the complementary ERF function integrated between x and infinity * * Note: In Excel 2007 or earlier, if you input a negative value for the lower bound argument, * the function would return a #NUM! error. However, in Excel 2010, the function algorithm was * improved, so that it can now calculate the function for both positive and negative x values. * PhpSpreadsheet follows Excel 2010 behaviour, and accepts nagative arguments. * * Excel Function: * ERFC(x) *
> * @deprecated 1.17.0 * @param float $x The lower bound for integrating ERFC > * Use the ERFC() method in the Engineering\ErfC class instead * > * @see Engineering\ErfC::ERFC() * @return float|string > *
< * @return float|string
> * @return array|float|string
public static function ERFC($x) {
< $x = Functions::flattenSingleValue($x); < < if (is_numeric($x)) { < return self::erfcVal($x); < } < < return Functions::VALUE();
> return Engineering\ErfC::ERFC($x);
} /** * getConversionGroups * Returns a list of the different conversion groups for UOM conversions. *
< * @Deprecated Use the getConversionCategories() method in the ConvertUOM class instead
> * @deprecated 1.16.0 > * Use the getConversionCategories() method in the Engineering\ConvertUOM class instead > * @see Engineering\ConvertUOM::getConversionCategories()
* * @return array */ public static function getConversionGroups() { return Engineering\ConvertUOM::getConversionCategories(); } /** * getConversionGroupUnits * Returns an array of units of measure, for a specified conversion group, or for all groups. *
< * @Deprecated Use the getConversionCategoryUnits() method in the ConvertUOM class instead
> * @deprecated 1.16.0 > * Use the getConversionCategoryUnits() method in the ConvertUOM class instead > * @see Engineering\ConvertUOM::getConversionCategoryUnits()
* * @param null|mixed $category * * @return array */ public static function getConversionGroupUnits($category = null) { return Engineering\ConvertUOM::getConversionCategoryUnits($category); } /** * getConversionGroupUnitDetails. *
< * @Deprecated Use the getConversionCategoryUnitDetails() method in the ConvertUOM class instead
> * @deprecated 1.16.0 > * Use the getConversionCategoryUnitDetails() method in the ConvertUOM class instead > * @see Engineering\ConvertUOM::getConversionCategoryUnitDetails()
* * @param null|mixed $category * * @return array */ public static function getConversionGroupUnitDetails($category = null) { return Engineering\ConvertUOM::getConversionCategoryUnitDetails($category); } /** * getConversionMultipliers * Returns an array of the Multiplier prefixes that can be used with Units of Measure in CONVERTUOM(). *
< * @Deprecated Use the getConversionMultipliers() method in the ConvertUOM class instead
> * @deprecated 1.16.0 > * Use the getConversionMultipliers() method in the ConvertUOM class instead > * @see Engineering\ConvertUOM::getConversionMultipliers()
*
< * @return array of mixed
> * @return mixed[]
*/ public static function getConversionMultipliers() { return Engineering\ConvertUOM::getConversionMultipliers(); } /**
< * getBinaryConversionMultipliers < * Returns an array of the additional Multiplier prefixes that can be used with Information Units of Measure in CONVERTUOM().
> * getBinaryConversionMultipliers. > * > * Returns an array of the additional Multiplier prefixes that can be used with Information Units of Measure > * in CONVERTUOM().
*
< * @Deprecated Use the getBinaryConversionMultipliers() method in the ConvertUOM class instead
> * @deprecated 1.16.0 > * Use the getBinaryConversionMultipliers() method in the ConvertUOM class instead > * @see Engineering\ConvertUOM::getBinaryConversionMultipliers()
*
< * @return array of mixed
> * @return mixed[]
*/ public static function getBinaryConversionMultipliers() { return Engineering\ConvertUOM::getBinaryConversionMultipliers(); } /** * CONVERTUOM. * * Converts a number from one measurement system to another. * For example, CONVERT can translate a table of distances in miles to a table of distances * in kilometers. * * Excel Function: * CONVERT(value,fromUOM,toUOM) *
< * @Deprecated Use the CONVERT() method in the ConvertUOM class instead
> * @deprecated 1.16.0 > * Use the CONVERT() method in the ConvertUOM class instead > * @see Engineering\ConvertUOM::CONVERT()
* * @param float|int $value the value in fromUOM to convert * @param string $fromUOM the units for value * @param string $toUOM the units for the result *
< * @return float|string
> * @return array|float|string
*/ public static function CONVERTUOM($value, $fromUOM, $toUOM) { return Engineering\ConvertUOM::CONVERT($value, $fromUOM, $toUOM); } }