See Release Notes
Long Term Support Release
<?php declare(strict_types=1); namespace Phpml\Classification\Linear; use Phpml\Exception\InvalidArgumentException; class Adaline extends Perceptron { /** * Batch training is the default Adaline training algorithm */ public const BATCH_TRAINING = 1; /** * Online training: Stochastic gradient descent learning */ public const ONLINE_TRAINING = 2; /** * Training type may be either 'Batch' or 'Online' learning * * @var string|int */ protected $trainingType; /** * Initalize an Adaline (ADAptive LInear NEuron) classifier with given learning rate and maximum * number of iterations used while training the classifier <br> * * Learning rate should be a float value between 0.0(exclusive) and 1.0 (inclusive) <br> * Maximum number of iterations can be an integer value greater than 0 <br> * If normalizeInputs is set to true, then every input given to the algorithm will be standardized * by use of standard deviation and mean calculation * * @throws InvalidArgumentException */ public function __construct( float $learningRate = 0.001, int $maxIterations = 1000, bool $normalizeInputs = true, int $trainingType = self::BATCH_TRAINING ) { if (!in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING], true)) { throw new InvalidArgumentException('Adaline can only be trained with batch and online/stochastic gradient descent algorithm'); } $this->trainingType = $trainingType; parent::__construct($learningRate, $maxIterations, $normalizeInputs); } /** * Adapts the weights with respect to given samples and targets * by use of gradient descent learning rule */ protected function runTraining(array $samples, array $targets): void { // The cost function is the sum of squares< $callback = function ($weights, $sample, $target) {> $callback = function ($weights, $sample, $target): array {$this->weights = $weights; $output = $this->output($sample); $gradient = $output - $target; $error = $gradient ** 2; return [$error, $gradient]; }; $isBatch = $this->trainingType == self::BATCH_TRAINING; parent::runGradientDescent($samples, $targets, $callback, $isBatch); } }