Search moodle.org's
Developer Documentation

See Release Notes
Long Term Support Release

  • Bug fixes for general core bugs in 3.9.x will end* 10 May 2021 (12 months).
  • Bug fixes for security issues in 3.9.x will end* 8 May 2023 (36 months).
  • PHP version: minimum PHP 7.2.0 Note: minimum PHP version has increased since Moodle 3.8. PHP 7.3.x and 7.4.x are supported too.
<?php

namespace PhpOffice\PhpSpreadsheet\Calculation;

< use PhpOffice\PhpSpreadsheet\Shared\Trend\Trend;
> use PhpOffice\PhpSpreadsheet\Calculation\Statistical\Averages; > use PhpOffice\PhpSpreadsheet\Calculation\Statistical\Conditional; > use PhpOffice\PhpSpreadsheet\Calculation\Statistical\Confidence; > use PhpOffice\PhpSpreadsheet\Calculation\Statistical\Counts; > use PhpOffice\PhpSpreadsheet\Calculation\Statistical\Maximum; > use PhpOffice\PhpSpreadsheet\Calculation\Statistical\Minimum; > use PhpOffice\PhpSpreadsheet\Calculation\Statistical\Permutations; > use PhpOffice\PhpSpreadsheet\Calculation\Statistical\StandardDeviations; > use PhpOffice\PhpSpreadsheet\Calculation\Statistical\Trends; > use PhpOffice\PhpSpreadsheet\Calculation\Statistical\Variances;
> /** class Statistical > * @deprecated 1.18.0 { > */
const LOG_GAMMA_X_MAX_VALUE = 2.55e305;
< const XMININ = 2.23e-308;
const EPS = 2.22e-16; const MAX_VALUE = 1.2e308;
< const MAX_ITERATIONS = 256;
const SQRT2PI = 2.5066282746310005024157652848110452530069867406099;
< private static function checkTrendArrays(&$array1, &$array2) < { < if (!is_array($array1)) { < $array1 = [$array1]; < } < if (!is_array($array2)) { < $array2 = [$array2]; < } < < $array1 = Functions::flattenArray($array1); < $array2 = Functions::flattenArray($array2); < foreach ($array1 as $key => $value) { < if ((is_bool($value)) || (is_string($value)) || ($value === null)) { < unset($array1[$key], $array2[$key]); < } < } < foreach ($array2 as $key => $value) { < if ((is_bool($value)) || (is_string($value)) || ($value === null)) { < unset($array1[$key], $array2[$key]); < } < } < $array1 = array_merge($array1); < $array2 = array_merge($array2); < < return true; < } < < /** < * Incomplete beta function. < * < * @author Jaco van Kooten < * @author Paul Meagher < * < * The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992). < * < * @param mixed $x require 0<=x<=1 < * @param mixed $p require p>0 < * @param mixed $q require q>0 < * < * @return float 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow < */ < private static function incompleteBeta($x, $p, $q) < { < if ($x <= 0.0) { < return 0.0; < } elseif ($x >= 1.0) { < return 1.0; < } elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > self::LOG_GAMMA_X_MAX_VALUE)) { < return 0.0; < } < $beta_gam = exp((0 - self::logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x)); < if ($x < ($p + 1.0) / ($p + $q + 2.0)) { < return $beta_gam * self::betaFraction($x, $p, $q) / $p; < } < < return 1.0 - ($beta_gam * self::betaFraction(1 - $x, $q, $p) / $q); < } < < // Function cache for logBeta function < private static $logBetaCacheP = 0.0; < < private static $logBetaCacheQ = 0.0; < < private static $logBetaCacheResult = 0.0; < < /** < * The natural logarithm of the beta function. < * < * @param mixed $p require p>0 < * @param mixed $q require q>0 < * < * @return float 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow < * < * @author Jaco van Kooten < */ < private static function logBeta($p, $q) < { < if ($p != self::$logBetaCacheP || $q != self::$logBetaCacheQ) { < self::$logBetaCacheP = $p; < self::$logBetaCacheQ = $q; < if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > self::LOG_GAMMA_X_MAX_VALUE)) { < self::$logBetaCacheResult = 0.0; < } else { < self::$logBetaCacheResult = self::logGamma($p) + self::logGamma($q) - self::logGamma($p + $q); < } < } < < return self::$logBetaCacheResult; < } < < /** < * Evaluates of continued fraction part of incomplete beta function. < * Based on an idea from Numerical Recipes (W.H. Press et al, 1992). < * < * @author Jaco van Kooten < * < * @param mixed $x < * @param mixed $p < * @param mixed $q < * < * @return float < */ < private static function betaFraction($x, $p, $q) < { < $c = 1.0; < $sum_pq = $p + $q; < $p_plus = $p + 1.0; < $p_minus = $p - 1.0; < $h = 1.0 - $sum_pq * $x / $p_plus; < if (abs($h) < self::XMININ) { < $h = self::XMININ; < } < $h = 1.0 / $h; < $frac = $h; < $m = 1; < $delta = 0.0; < while ($m <= self::MAX_ITERATIONS && abs($delta - 1.0) > Functions::PRECISION) { < $m2 = 2 * $m; < // even index for d < $d = $m * ($q - $m) * $x / (($p_minus + $m2) * ($p + $m2)); < $h = 1.0 + $d * $h; < if (abs($h) < self::XMININ) { < $h = self::XMININ; < } < $h = 1.0 / $h; < $c = 1.0 + $d / $c; < if (abs($c) < self::XMININ) { < $c = self::XMININ; < } < $frac *= $h * $c; < // odd index for d < $d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2)); < $h = 1.0 + $d * $h; < if (abs($h) < self::XMININ) { < $h = self::XMININ; < } < $h = 1.0 / $h; < $c = 1.0 + $d / $c; < if (abs($c) < self::XMININ) { < $c = self::XMININ; < } < $delta = $h * $c; < $frac *= $delta; < ++$m; < } < < return $frac; < } < < /** < * logGamma function. < * < * @version 1.1 < * < * @author Jaco van Kooten < * < * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher. < * < * The natural logarithm of the gamma function. <br /> < * Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br /> < * Applied Mathematics Division <br /> < * Argonne National Laboratory <br /> < * Argonne, IL 60439 <br /> < * <p> < * References: < * <ol> < * <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural < * Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li> < * <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li> < * <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li> < * </ol> < * </p> < * <p> < * From the original documentation: < * </p> < * <p> < * This routine calculates the LOG(GAMMA) function for a positive real argument X. < * Computation is based on an algorithm outlined in references 1 and 2. < * The program uses rational functions that theoretically approximate LOG(GAMMA) < * to at least 18 significant decimal digits. The approximation for X > 12 is from < * reference 3, while approximations for X < 12.0 are similar to those in reference < * 1, but are unpublished. The accuracy achieved depends on the arithmetic system, < * the compiler, the intrinsic functions, and proper selection of the < * machine-dependent constants. < * </p> < * <p> < * Error returns: <br /> < * The program returns the value XINF for X .LE. 0.0 or when overflow would occur. < * The computation is believed to be free of underflow and overflow. < * </p> < * < * @return float MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305 < */ < < // Function cache for logGamma < private static $logGammaCacheResult = 0.0; < < private static $logGammaCacheX = 0.0; < < private static function logGamma($x) < { < // Log Gamma related constants < static $lg_d1 = -0.5772156649015328605195174; < static $lg_d2 = 0.4227843350984671393993777; < static $lg_d4 = 1.791759469228055000094023; < < static $lg_p1 = [ < 4.945235359296727046734888, < 201.8112620856775083915565, < 2290.838373831346393026739, < 11319.67205903380828685045, < 28557.24635671635335736389, < 38484.96228443793359990269, < 26377.48787624195437963534, < 7225.813979700288197698961, < ]; < static $lg_p2 = [ < 4.974607845568932035012064, < 542.4138599891070494101986, < 15506.93864978364947665077, < 184793.2904445632425417223, < 1088204.76946882876749847, < 3338152.967987029735917223, < 5106661.678927352456275255, < 3074109.054850539556250927, < ]; < static $lg_p4 = [ < 14745.02166059939948905062, < 2426813.369486704502836312, < 121475557.4045093227939592, < 2663432449.630976949898078, < 29403789566.34553899906876, < 170266573776.5398868392998, < 492612579337.743088758812, < 560625185622.3951465078242, < ]; < static $lg_q1 = [ < 67.48212550303777196073036, < 1113.332393857199323513008, < 7738.757056935398733233834, < 27639.87074403340708898585, < 54993.10206226157329794414, < 61611.22180066002127833352, < 36351.27591501940507276287, < 8785.536302431013170870835, < ]; < static $lg_q2 = [ < 183.0328399370592604055942, < 7765.049321445005871323047, < 133190.3827966074194402448, < 1136705.821321969608938755, < 5267964.117437946917577538, < 13467014.54311101692290052, < 17827365.30353274213975932, < 9533095.591844353613395747, < ]; < static $lg_q4 = [ < 2690.530175870899333379843, < 639388.5654300092398984238, < 41355999.30241388052042842, < 1120872109.61614794137657, < 14886137286.78813811542398, < 101680358627.2438228077304, < 341747634550.7377132798597, < 446315818741.9713286462081, < ]; < static $lg_c = [ < -0.001910444077728, < 8.4171387781295e-4, < -5.952379913043012e-4, < 7.93650793500350248e-4, < -0.002777777777777681622553, < 0.08333333333333333331554247, < 0.0057083835261, < ]; < < // Rough estimate of the fourth root of logGamma_xBig < static $lg_frtbig = 2.25e76; < static $pnt68 = 0.6796875; < < if ($x == self::$logGammaCacheX) { < return self::$logGammaCacheResult; < } < $y = $x; < if ($y > 0.0 && $y <= self::LOG_GAMMA_X_MAX_VALUE) { < if ($y <= self::EPS) { < $res = -log($y); < } elseif ($y <= 1.5) { < // --------------------- < // EPS .LT. X .LE. 1.5 < // --------------------- < if ($y < $pnt68) { < $corr = -log($y); < $xm1 = $y; < } else { < $corr = 0.0; < $xm1 = $y - 1.0; < } < if ($y <= 0.5 || $y >= $pnt68) { < $xden = 1.0; < $xnum = 0.0; < for ($i = 0; $i < 8; ++$i) { < $xnum = $xnum * $xm1 + $lg_p1[$i]; < $xden = $xden * $xm1 + $lg_q1[$i]; < } < $res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden)); < } else { < $xm2 = $y - 1.0; < $xden = 1.0; < $xnum = 0.0; < for ($i = 0; $i < 8; ++$i) { < $xnum = $xnum * $xm2 + $lg_p2[$i]; < $xden = $xden * $xm2 + $lg_q2[$i]; < } < $res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden)); < } < } elseif ($y <= 4.0) { < // --------------------- < // 1.5 .LT. X .LE. 4.0 < // --------------------- < $xm2 = $y - 2.0; < $xden = 1.0; < $xnum = 0.0; < for ($i = 0; $i < 8; ++$i) { < $xnum = $xnum * $xm2 + $lg_p2[$i]; < $xden = $xden * $xm2 + $lg_q2[$i]; < } < $res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden)); < } elseif ($y <= 12.0) { < // ---------------------- < // 4.0 .LT. X .LE. 12.0 < // ---------------------- < $xm4 = $y - 4.0; < $xden = -1.0; < $xnum = 0.0; < for ($i = 0; $i < 8; ++$i) { < $xnum = $xnum * $xm4 + $lg_p4[$i]; < $xden = $xden * $xm4 + $lg_q4[$i]; < } < $res = $lg_d4 + $xm4 * ($xnum / $xden); < } else { < // --------------------------------- < // Evaluate for argument .GE. 12.0 < // --------------------------------- < $res = 0.0; < if ($y <= $lg_frtbig) { < $res = $lg_c[6]; < $ysq = $y * $y; < for ($i = 0; $i < 6; ++$i) { < $res = $res / $ysq + $lg_c[$i]; < } < $res /= $y; < $corr = log($y); < $res = $res + log(self::SQRT2PI) - 0.5 * $corr; < $res += $y * ($corr - 1.0); < } < } < } else { < // -------------------------- < // Return for bad arguments < // -------------------------- < $res = self::MAX_VALUE; < } < // ------------------------------ < // Final adjustments and return < // ------------------------------ < self::$logGammaCacheX = $x; < self::$logGammaCacheResult = $res; < < return $res; < } < < // < // Private implementation of the incomplete Gamma function < // < private static function incompleteGamma($a, $x) < { < static $max = 32; < $summer = 0; < for ($n = 0; $n <= $max; ++$n) { < $divisor = $a; < for ($i = 1; $i <= $n; ++$i) { < $divisor *= ($a + $i); < } < $summer += (pow($x, $n) / $divisor); < } < < return pow($x, $a) * exp(0 - $x) * $summer; < } < < // < // Private implementation of the Gamma function < // < private static function gamma($data) < { < if ($data == 0.0) { < return 0; < } < < static $p0 = 1.000000000190015; < static $p = [ < 1 => 76.18009172947146, < 2 => -86.50532032941677, < 3 => 24.01409824083091, < 4 => -1.231739572450155, < 5 => 1.208650973866179e-3, < 6 => -5.395239384953e-6, < ]; < < $y = $x = $data; < $tmp = $x + 5.5; < $tmp -= ($x + 0.5) * log($tmp); < < $summer = $p0; < for ($j = 1; $j <= 6; ++$j) { < $summer += ($p[$j] / ++$y); < } < < return exp(0 - $tmp + log(self::SQRT2PI * $summer / $x)); < } < < /* < * inverse_ncdf.php < * ------------------- < * begin : Friday, January 16, 2004 < * copyright : (C) 2004 Michael Nickerson < * email : nickersonm@yahoo.com < * < */ < private static function inverseNcdf($p) < { < // Inverse ncdf approximation by Peter J. Acklam, implementation adapted to < // PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as < // a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html < // I have not checked the accuracy of this implementation. Be aware that PHP < // will truncate the coeficcients to 14 digits. < < // You have permission to use and distribute this function freely for < // whatever purpose you want, but please show common courtesy and give credit < // where credit is due. < < // Input paramater is $p - probability - where 0 < p < 1. < < // Coefficients in rational approximations < static $a = [ < 1 => -3.969683028665376e+01, < 2 => 2.209460984245205e+02, < 3 => -2.759285104469687e+02, < 4 => 1.383577518672690e+02, < 5 => -3.066479806614716e+01, < 6 => 2.506628277459239e+00, < ]; < < static $b = [ < 1 => -5.447609879822406e+01, < 2 => 1.615858368580409e+02, < 3 => -1.556989798598866e+02, < 4 => 6.680131188771972e+01, < 5 => -1.328068155288572e+01, < ]; < < static $c = [ < 1 => -7.784894002430293e-03, < 2 => -3.223964580411365e-01, < 3 => -2.400758277161838e+00, < 4 => -2.549732539343734e+00, < 5 => 4.374664141464968e+00, < 6 => 2.938163982698783e+00, < ]; < < static $d = [ < 1 => 7.784695709041462e-03, < 2 => 3.224671290700398e-01, < 3 => 2.445134137142996e+00, < 4 => 3.754408661907416e+00, < ]; < < // Define lower and upper region break-points. < $p_low = 0.02425; //Use lower region approx. below this < $p_high = 1 - $p_low; //Use upper region approx. above this < < if (0 < $p && $p < $p_low) { < // Rational approximation for lower region. < $q = sqrt(-2 * log($p)); < < return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) / < (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1); < } elseif ($p_low <= $p && $p <= $p_high) { < // Rational approximation for central region. < $q = $p - 0.5; < $r = $q * $q; < < return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q / < ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1); < } elseif ($p_high < $p && $p < 1) { < // Rational approximation for upper region. < $q = sqrt(-2 * log(1 - $p)); < < return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) / < (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1); < } < // If 0 < p < 1, return a null value < return Functions::NULL(); < } < < /** < * MS Excel does not count Booleans if passed as cell values, but they are counted if passed as literals. < * OpenOffice Calc always counts Booleans. < * Gnumeric never counts Booleans. < * < * @param mixed $arg < * @param mixed $k < * < * @return int|mixed < */ < private static function testAcceptedBoolean($arg, $k) < { < if ((is_bool($arg)) && < ((!Functions::isCellValue($k) && (Functions::getCompatibilityMode() === Functions::COMPATIBILITY_EXCEL)) || < (Functions::getCompatibilityMode() === Functions::COMPATIBILITY_OPENOFFICE))) { < $arg = (int) $arg; < } < < return $arg; < } < < /** < * @param mixed $arg < * @param mixed $k < * < * @return bool < */ < private static function isAcceptedCountable($arg, $k) < { < if (((is_numeric($arg)) && (!is_string($arg))) || < ((is_numeric($arg)) && (!Functions::isCellValue($k)) && < (Functions::getCompatibilityMode() !== Functions::COMPATIBILITY_GNUMERIC))) { < return true; < } < < return false; < } <
/** * AVEDEV. * * Returns the average of the absolute deviations of data points from their mean. * AVEDEV is a measure of the variability in a data set. * * Excel Function: * AVEDEV(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the averageDeviations() method in the Statistical\Averages class instead > * @see Statistical\Averages::averageDeviations()
* * @param mixed ...$args Data values * * @return float|string */ public static function AVEDEV(...$args) {
< $aArgs = Functions::flattenArrayIndexed($args); < < // Return value < $returnValue = 0; < < $aMean = self::AVERAGE(...$args); < if ($aMean === Functions::DIV0()) { < return Functions::NAN(); < } elseif ($aMean === Functions::VALUE()) { < return Functions::VALUE(); < } < < $aCount = 0; < foreach ($aArgs as $k => $arg) { < $arg = self::testAcceptedBoolean($arg, $k); < // Is it a numeric value? < // Strings containing numeric values are only counted if they are string literals (not cell values) < // and then only in MS Excel and in Open Office, not in Gnumeric < if ((is_string($arg)) && (!is_numeric($arg)) && (!Functions::isCellValue($k))) { < return Functions::VALUE(); < } < if (self::isAcceptedCountable($arg, $k)) { < $returnValue += abs($arg - $aMean); < ++$aCount; < } < } < < // Return < if ($aCount === 0) { < return Functions::DIV0(); < } < < return $returnValue / $aCount;
> return Averages::averageDeviations(...$args);
} /** * AVERAGE. * * Returns the average (arithmetic mean) of the arguments * * Excel Function: * AVERAGE(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the average() method in the Statistical\Averages class instead > * @see Statistical\Averages::average()
* * @param mixed ...$args Data values * * @return float|string */ public static function AVERAGE(...$args) {
< $returnValue = $aCount = 0; < < // Loop through arguments < foreach (Functions::flattenArrayIndexed($args) as $k => $arg) { < $arg = self::testAcceptedBoolean($arg, $k); < // Is it a numeric value? < // Strings containing numeric values are only counted if they are string literals (not cell values) < // and then only in MS Excel and in Open Office, not in Gnumeric < if ((is_string($arg)) && (!is_numeric($arg)) && (!Functions::isCellValue($k))) { < return Functions::VALUE(); < } < if (self::isAcceptedCountable($arg, $k)) { < $returnValue += $arg; < ++$aCount; < } < } < < // Return < if ($aCount > 0) { < return $returnValue / $aCount; < } < < return Functions::DIV0();
> return Averages::average(...$args);
} /** * AVERAGEA. * * Returns the average of its arguments, including numbers, text, and logical values * * Excel Function: * AVERAGEA(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the averageA() method in the Statistical\Averages class instead > * @see Statistical\Averages::averageA()
* * @param mixed ...$args Data values * * @return float|string */ public static function AVERAGEA(...$args) {
< $returnValue = null; < < $aCount = 0; < // Loop through arguments < foreach (Functions::flattenArrayIndexed($args) as $k => $arg) { < if ((is_bool($arg)) && < (!Functions::isMatrixValue($k))) { < } else { < if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { < if (is_bool($arg)) { < $arg = (int) $arg; < } elseif (is_string($arg)) { < $arg = 0; < } < $returnValue += $arg; < ++$aCount; < } < } < } < < if ($aCount > 0) { < return $returnValue / $aCount; < } < < return Functions::DIV0();
> return Averages::averageA(...$args);
} /** * AVERAGEIF. * * Returns the average value from a range of cells that contain numbers within the list of arguments * * Excel Function: * AVERAGEIF(value1[,value2[, ...]],condition) *
< * @category Mathematical and Trigonometric Functions
> * @deprecated 1.17.0 > * Use the AVERAGEIF() method in the Statistical\Conditional class instead > * @see Statistical\Conditional::AVERAGEIF()
*
< * @param mixed $aArgs Data values
> * @param mixed $range Data values
* @param string $condition the criteria that defines which cells will be checked
< * @param mixed[] $averageArgs Data values
> * @param mixed[] $averageRange Data values
*
< * @return float|string
> * @return null|float|string
*/
< public static function AVERAGEIF($aArgs, $condition, $averageArgs = [])
> public static function AVERAGEIF($range, $condition, $averageRange = [])
{
< $returnValue = 0; < < $aArgs = Functions::flattenArray($aArgs); < $averageArgs = Functions::flattenArray($averageArgs); < if (empty($averageArgs)) { < $averageArgs = $aArgs; < } < $condition = Functions::ifCondition($condition); < $conditionIsNumeric = strpos($condition, '"') === false; < < // Loop through arguments < $aCount = 0; < foreach ($aArgs as $key => $arg) { < if (!is_numeric($arg)) { < if ($conditionIsNumeric) { < continue; < } < $arg = Calculation::wrapResult(strtoupper($arg)); < } elseif (!$conditionIsNumeric) { < continue; < } < $testCondition = '=' . $arg . $condition; < if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) { < $returnValue += $averageArgs[$key]; < ++$aCount; < } < } < < if ($aCount > 0) { < return $returnValue / $aCount; < } < < return Functions::DIV0();
> return Conditional::AVERAGEIF($range, $condition, $averageRange);
} /** * BETADIST. * * Returns the beta distribution. *
> * @deprecated 1.18.0 * @param float $value Value at which you want to evaluate the distribution > * Use the distribution() method in the Statistical\Distributions\Beta class instead * @param float $alpha Parameter to the distribution > * @see Statistical\Distributions\Beta::distribution() * @param float $beta Parameter to the distribution > *
* @param mixed $rMin * @param mixed $rMax *
< * @return float|string
> * @return array|float|string
*/ public static function BETADIST($value, $alpha, $beta, $rMin = 0, $rMax = 1) {
< $value = Functions::flattenSingleValue($value); < $alpha = Functions::flattenSingleValue($alpha); < $beta = Functions::flattenSingleValue($beta); < $rMin = Functions::flattenSingleValue($rMin); < $rMax = Functions::flattenSingleValue($rMax); < < if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) { < if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) { < return Functions::NAN(); < } < if ($rMin > $rMax) { < $tmp = $rMin; < $rMin = $rMax; < $rMax = $tmp; < } < $value -= $rMin; < $value /= ($rMax - $rMin); < < return self::incompleteBeta($value, $alpha, $beta); < } < < return Functions::VALUE();
> return Statistical\Distributions\Beta::distribution($value, $alpha, $beta, $rMin, $rMax);
} /** * BETAINV. *
< * Returns the inverse of the beta distribution.
> * Returns the inverse of the Beta distribution. > * > * @deprecated 1.18.0 > * Use the inverse() method in the Statistical\Distributions\Beta class instead > * @see Statistical\Distributions\Beta::inverse()
* * @param float $probability Probability at which you want to evaluate the distribution * @param float $alpha Parameter to the distribution * @param float $beta Parameter to the distribution * @param float $rMin Minimum value * @param float $rMax Maximum value *
< * @return float|string
> * @return array|float|string
*/ public static function BETAINV($probability, $alpha, $beta, $rMin = 0, $rMax = 1) {
< $probability = Functions::flattenSingleValue($probability); < $alpha = Functions::flattenSingleValue($alpha); < $beta = Functions::flattenSingleValue($beta); < $rMin = Functions::flattenSingleValue($rMin); < $rMax = Functions::flattenSingleValue($rMax); < < if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) { < if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) { < return Functions::NAN(); < } < if ($rMin > $rMax) { < $tmp = $rMin; < $rMin = $rMax; < $rMax = $tmp; < } < $a = 0; < $b = 2; < < $i = 0; < while ((($b - $a) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) { < $guess = ($a + $b) / 2; < $result = self::BETADIST($guess, $alpha, $beta); < if (($result == $probability) || ($result == 0)) { < $b = $a; < } elseif ($result > $probability) { < $b = $guess; < } else { < $a = $guess; < } < } < if ($i == self::MAX_ITERATIONS) { < return Functions::NA(); < } < < return round($rMin + $guess * ($rMax - $rMin), 12); < } < < return Functions::VALUE();
> return Statistical\Distributions\Beta::inverse($probability, $alpha, $beta, $rMin, $rMax);
} /** * BINOMDIST. * * Returns the individual term binomial distribution probability. Use BINOMDIST in problems with * a fixed number of tests or trials, when the outcomes of any trial are only success or failure, * when trials are independent, and when the probability of success is constant throughout the * experiment. For example, BINOMDIST can calculate the probability that two of the next three * babies born are male. *
< * @param float $value Number of successes in trials < * @param float $trials Number of trials < * @param float $probability Probability of success on each trial < * @param bool $cumulative
> * @deprecated 1.18.0 > * Use the distribution() method in the Statistical\Distributions\Binomial class instead > * @see Statistical\Distributions\Binomial::distribution() > * > * @param mixed $value Number of successes in trials > * @param mixed $trials Number of trials > * @param mixed $probability Probability of success on each trial > * @param mixed $cumulative
*
< * @return float|string
> * @return array|float|string
*/ public static function BINOMDIST($value, $trials, $probability, $cumulative) {
< $value = Functions::flattenSingleValue($value); < $trials = Functions::flattenSingleValue($trials); < $probability = Functions::flattenSingleValue($probability); < < if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) { < $value = floor($value); < $trials = floor($trials); < if (($value < 0) || ($value > $trials)) { < return Functions::NAN(); < } < if (($probability < 0) || ($probability > 1)) { < return Functions::NAN(); < } < if ((is_numeric($cumulative)) || (is_bool($cumulative))) { < if ($cumulative) { < $summer = 0; < for ($i = 0; $i <= $value; ++$i) { < $summer += MathTrig::COMBIN($trials, $i) * pow($probability, $i) * pow(1 - $probability, $trials - $i); < } < < return $summer; < } < < return MathTrig::COMBIN($trials, $value) * pow($probability, $value) * pow(1 - $probability, $trials - $value); < } < } < < return Functions::VALUE();
> return Statistical\Distributions\Binomial::distribution($value, $trials, $probability, $cumulative);
} /** * CHIDIST. * * Returns the one-tailed probability of the chi-squared distribution. *
> * @deprecated 1.18.0 * @param float $value Value for the function > * Use the distributionRightTail() method in the Statistical\Distributions\ChiSquared class instead * @param float $degrees degrees of freedom > * @see Statistical\Distributions\ChiSquared::distributionRightTail() * > *
< * @return float|string
> * @return array|float|string
*/ public static function CHIDIST($value, $degrees) {
< $value = Functions::flattenSingleValue($value); < $degrees = Functions::flattenSingleValue($degrees); < < if ((is_numeric($value)) && (is_numeric($degrees))) { < $degrees = floor($degrees); < if ($degrees < 1) { < return Functions::NAN(); < } < if ($value < 0) { < if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { < return 1; < } < < return Functions::NAN(); < } < < return 1 - (self::incompleteGamma($degrees / 2, $value / 2) / self::gamma($degrees / 2)); < } < < return Functions::VALUE();
> return Statistical\Distributions\ChiSquared::distributionRightTail($value, $degrees);
} /** * CHIINV. * * Returns the one-tailed probability of the chi-squared distribution. *
> * @deprecated 1.18.0 * @param float $probability Probability for the function > * Use the inverseRightTail() method in the Statistical\Distributions\ChiSquared class instead * @param float $degrees degrees of freedom > * @see Statistical\Distributions\ChiSquared::inverseRightTail() * > *
< * @return float|string
> * @return array|float|string
*/ public static function CHIINV($probability, $degrees) {
< $probability = Functions::flattenSingleValue($probability); < $degrees = Functions::flattenSingleValue($degrees); < < if ((is_numeric($probability)) && (is_numeric($degrees))) { < $degrees = floor($degrees); < < $xLo = 100; < $xHi = 0; < < $x = $xNew = 1; < $dx = 1; < $i = 0; < < while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) { < // Apply Newton-Raphson step < $result = 1 - (self::incompleteGamma($degrees / 2, $x / 2) / self::gamma($degrees / 2)); < $error = $result - $probability; < if ($error == 0.0) { < $dx = 0; < } elseif ($error < 0.0) { < $xLo = $x; < } else { < $xHi = $x; < } < // Avoid division by zero < if ($result != 0.0) { < $dx = $error / $result; < $xNew = $x - $dx; < } < // If the NR fails to converge (which for example may be the < // case if the initial guess is too rough) we apply a bisection < // step to determine a more narrow interval around the root. < if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) { < $xNew = ($xLo + $xHi) / 2; < $dx = $xNew - $x; < } < $x = $xNew; < } < if ($i == self::MAX_ITERATIONS) { < return Functions::NA(); < } < < return round($x, 12); < } < < return Functions::VALUE();
> return Statistical\Distributions\ChiSquared::inverseRightTail($probability, $degrees);
} /** * CONFIDENCE. * * Returns the confidence interval for a population mean *
> * @deprecated 1.18.0 * @param float $alpha > * Use the CONFIDENCE() method in the Statistical\Confidence class instead * @param float $stdDev Standard Deviation > * @see Statistical\Confidence::CONFIDENCE() * @param float $size > *
*
< * @return float|string
> * @return array|float|string
*/ public static function CONFIDENCE($alpha, $stdDev, $size) {
< $alpha = Functions::flattenSingleValue($alpha); < $stdDev = Functions::flattenSingleValue($stdDev); < $size = Functions::flattenSingleValue($size); < < if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) { < $size = floor($size); < if (($alpha <= 0) || ($alpha >= 1)) { < return Functions::NAN(); < } < if (($stdDev <= 0) || ($size < 1)) { < return Functions::NAN(); < } < < return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size); < } < < return Functions::VALUE();
> return Confidence::CONFIDENCE($alpha, $stdDev, $size);
} /** * CORREL. * * Returns covariance, the average of the products of deviations for each data point pair. *
> * @deprecated 1.18.0 * @param mixed $yValues array of mixed Data Series Y > * Use the CORREL() method in the Statistical\Trends class instead * @param null|mixed $xValues array of mixed Data Series X > * @see Statistical\Trends::CORREL() * > *
* @return float|string */ public static function CORREL($yValues, $xValues = null) {
< if (($xValues === null) || (!is_array($yValues)) || (!is_array($xValues))) { < return Functions::VALUE(); < } < if (!self::checkTrendArrays($yValues, $xValues)) { < return Functions::VALUE(); < } < $yValueCount = count($yValues); < $xValueCount = count($xValues); < < if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { < return Functions::NA(); < } elseif ($yValueCount == 1) { < return Functions::DIV0(); < } < < $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); < < return $bestFitLinear->getCorrelation();
> return Trends::CORREL($xValues, $yValues);
} /** * COUNT. * * Counts the number of cells that contain numbers within the list of arguments * * Excel Function: * COUNT(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the COUNT() method in the Statistical\Counts class instead > * @see Statistical\Counts::COUNT()
* * @param mixed ...$args Data values * * @return int */ public static function COUNT(...$args) {
< $returnValue = 0; < < // Loop through arguments < $aArgs = Functions::flattenArrayIndexed($args); < foreach ($aArgs as $k => $arg) { < $arg = self::testAcceptedBoolean($arg, $k); < // Is it a numeric value? < // Strings containing numeric values are only counted if they are string literals (not cell values) < // and then only in MS Excel and in Open Office, not in Gnumeric < if (self::isAcceptedCountable($arg, $k)) { < ++$returnValue; < } < } < < return $returnValue;
> return Counts::COUNT(...$args);
} /** * COUNTA. * * Counts the number of cells that are not empty within the list of arguments * * Excel Function: * COUNTA(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the COUNTA() method in the Statistical\Counts class instead > * @see Statistical\Counts::COUNTA()
* * @param mixed ...$args Data values * * @return int */ public static function COUNTA(...$args) {
< $returnValue = 0; < < // Loop through arguments < $aArgs = Functions::flattenArrayIndexed($args); < foreach ($aArgs as $k => $arg) { < // Nulls are counted if literals, but not if cell values < if ($arg !== null || (!Functions::isCellValue($k))) { < ++$returnValue; < } < } < < return $returnValue;
> return Counts::COUNTA(...$args);
} /** * COUNTBLANK. * * Counts the number of empty cells within the list of arguments * * Excel Function: * COUNTBLANK(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the COUNTBLANK() method in the Statistical\Counts class instead > * @see Statistical\Counts::COUNTBLANK()
*
< * @param mixed ...$args Data values
> * @param mixed $range Data values
* * @return int */
< public static function COUNTBLANK(...$args)
> public static function COUNTBLANK($range)
{
< $returnValue = 0; < < // Loop through arguments < $aArgs = Functions::flattenArray($args); < foreach ($aArgs as $arg) { < // Is it a blank cell? < if (($arg === null) || ((is_string($arg)) && ($arg == ''))) { < ++$returnValue; < } < } < < return $returnValue;
> return Counts::COUNTBLANK($range);
} /** * COUNTIF. * * Counts the number of cells that contain numbers within the list of arguments * * Excel Function:
< * COUNTIF(value1[,value2[, ...]],condition)
> * COUNTIF(range,condition)
*
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the COUNTIF() method in the Statistical\Conditional class instead > * @see Statistical\Conditional::COUNTIF()
*
< * @param mixed $aArgs Data values
> * @param mixed $range Data values
* @param string $condition the criteria that defines which cells will be counted *
< * @return int
> * @return int|string
*/
< public static function COUNTIF($aArgs, $condition)
> public static function COUNTIF($range, $condition)
{
< $returnValue = 0; < < $aArgs = Functions::flattenArray($aArgs); < $condition = Functions::ifCondition($condition); < $conditionIsNumeric = strpos($condition, '"') === false; < // Loop through arguments < foreach ($aArgs as $arg) { < if (!is_numeric($arg)) { < if ($conditionIsNumeric) { < continue; < } < $arg = Calculation::wrapResult(strtoupper($arg)); < } elseif (!$conditionIsNumeric) { < continue; < } < $testCondition = '=' . $arg . $condition; < if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) { < // Is it a value within our criteria < ++$returnValue; < } < } < < return $returnValue;
> return Conditional::COUNTIF($range, $condition);
} /** * COUNTIFS. * * Counts the number of cells that contain numbers within the list of arguments * * Excel Function: * COUNTIFS(criteria_range1, criteria1, [criteria_range2, criteria2]…) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the COUNTIFS() method in the Statistical\Conditional class instead > * @see Statistical\Conditional::COUNTIFS()
*
< * @param mixed $args Criterias
> * @param mixed $args Pairs of Ranges and Criteria
*
< * @return int
> * @return int|string
*/ public static function COUNTIFS(...$args) {
< $arrayList = $args; < < // Return value < $returnValue = 0; < < if (empty($arrayList)) { < return $returnValue; < } < < $aArgsArray = []; < $conditions = []; < < while (count($arrayList) > 0) { < $aArgsArray[] = Functions::flattenArray(array_shift($arrayList)); < $conditions[] = Functions::ifCondition(array_shift($arrayList)); < } < < // Loop through each arg and see if arguments and conditions are true < foreach (array_keys($aArgsArray[0]) as $index) { < $valid = true; < < foreach ($conditions as $cidx => $condition) { < $conditionIsNumeric = strpos($condition, '"') === false; < $arg = $aArgsArray[$cidx][$index]; < < // Loop through arguments < if (!is_numeric($arg)) { < if ($conditionIsNumeric) { < $valid = false; < < break; // if false found, don't need to check other conditions < } < $arg = Calculation::wrapResult(strtoupper($arg)); < } elseif (!$conditionIsNumeric) { < $valid = false; < < break; // if false found, don't need to check other conditions < } < $testCondition = '=' . $arg . $condition; < if (!Calculation::getInstance()->_calculateFormulaValue($testCondition)) { < // Is not a value within our criteria < $valid = false; < < break; // if false found, don't need to check other conditions < } < } < < if ($valid) { < ++$returnValue; < } < } < < // Return < return $returnValue;
> return Conditional::COUNTIFS(...$args);
} /** * COVAR. * * Returns covariance, the average of the products of deviations for each data point pair. *
> * @deprecated 1.18.0 * @param mixed $yValues array of mixed Data Series Y > * Use the COVAR() method in the Statistical\Trends class instead * @param mixed $xValues array of mixed Data Series X > * @see Statistical\Trends::COVAR() * > *
* @return float|string */ public static function COVAR($yValues, $xValues) {
< if (!self::checkTrendArrays($yValues, $xValues)) { < return Functions::VALUE(); < } < $yValueCount = count($yValues); < $xValueCount = count($xValues); < < if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { < return Functions::NA(); < } elseif ($yValueCount == 1) { < return Functions::DIV0(); < } < < $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); < < return $bestFitLinear->getCovariance();
> return Trends::COVAR($yValues, $xValues);
} /** * CRITBINOM. * * Returns the smallest value for which the cumulative binomial distribution is greater * than or equal to a criterion value * * See https://support.microsoft.com/en-us/help/828117/ for details of the algorithm used *
> * @deprecated 1.18.0 * @param float $trials number of Bernoulli trials > * Use the inverse() method in the Statistical\Distributions\Binomial class instead * @param float $probability probability of a success on each trial > * @see Statistical\Distributions\Binomial::inverse() * @param float $alpha criterion value > *
*
< * @return int|string < * < * @todo Warning. This implementation differs from the algorithm detailed on the MS < * web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess < * This eliminates a potential endless loop error, but may have an adverse affect on the < * accuracy of the function (although all my tests have so far returned correct results).
> * @return array|int|string
*/ public static function CRITBINOM($trials, $probability, $alpha) {
< $trials = floor(Functions::flattenSingleValue($trials)); < $probability = Functions::flattenSingleValue($probability); < $alpha = Functions::flattenSingleValue($alpha); < < if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) { < $trials = (int) $trials; < if ($trials < 0) { < return Functions::NAN(); < } elseif (($probability < 0.0) || ($probability > 1.0)) { < return Functions::NAN(); < } elseif (($alpha < 0.0) || ($alpha > 1.0)) { < return Functions::NAN(); < } < < if ($alpha <= 0.5) { < $t = sqrt(log(1 / ($alpha * $alpha))); < $trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t)); < } else { < $t = sqrt(log(1 / pow(1 - $alpha, 2))); < $trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t); < } < < $Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability))); < if ($Guess < 0) { < $Guess = 0; < } elseif ($Guess > $trials) { < $Guess = $trials; < } < < $TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0; < $EssentiallyZero = 10e-12; < < $m = floor($trials * $probability); < ++$TotalUnscaledProbability; < if ($m == $Guess) { < ++$UnscaledPGuess; < } < if ($m <= $Guess) { < ++$UnscaledCumPGuess; < } < < $PreviousValue = 1; < $Done = false; < $k = $m + 1; < while ((!$Done) && ($k <= $trials)) { < $CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability)); < $TotalUnscaledProbability += $CurrentValue; < if ($k == $Guess) { < $UnscaledPGuess += $CurrentValue; < } < if ($k <= $Guess) { < $UnscaledCumPGuess += $CurrentValue; < } < if ($CurrentValue <= $EssentiallyZero) { < $Done = true; < } < $PreviousValue = $CurrentValue; < ++$k; < } < < $PreviousValue = 1; < $Done = false; < $k = $m - 1; < while ((!$Done) && ($k >= 0)) { < $CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability); < $TotalUnscaledProbability += $CurrentValue; < if ($k == $Guess) { < $UnscaledPGuess += $CurrentValue; < } < if ($k <= $Guess) { < $UnscaledCumPGuess += $CurrentValue; < } < if ($CurrentValue <= $EssentiallyZero) { < $Done = true; < } < $PreviousValue = $CurrentValue; < --$k; < } < < $PGuess = $UnscaledPGuess / $TotalUnscaledProbability; < $CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability; < < $CumPGuessMinus1 = $CumPGuess - 1; < < while (true) { < if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) { < return $Guess; < } elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) { < $PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability); < $CumPGuessMinus1 = $CumPGuess; < $CumPGuess = $CumPGuess + $PGuessPlus1; < $PGuess = $PGuessPlus1; < ++$Guess; < } elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) { < $PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability; < $CumPGuess = $CumPGuessMinus1; < $CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess; < $PGuess = $PGuessMinus1; < --$Guess; < } < } < } < < return Functions::VALUE();
> return Statistical\Distributions\Binomial::inverse($trials, $probability, $alpha);
} /** * DEVSQ. * * Returns the sum of squares of deviations of data points from their sample mean. * * Excel Function: * DEVSQ(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.18.0 > * Use the sumSquares() method in the Statistical\Deviations class instead > * @see Statistical\Deviations::sumSquares()
* * @param mixed ...$args Data values * * @return float|string */ public static function DEVSQ(...$args) {
< $aArgs = Functions::flattenArrayIndexed($args); < < // Return value < $returnValue = null; < < $aMean = self::AVERAGE($aArgs); < if ($aMean != Functions::DIV0()) { < $aCount = -1; < foreach ($aArgs as $k => $arg) { < // Is it a numeric value? < if ((is_bool($arg)) && < ((!Functions::isCellValue($k)) || < (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) { < $arg = (int) $arg; < } < if ((is_numeric($arg)) && (!is_string($arg))) { < if ($returnValue === null) { < $returnValue = pow(($arg - $aMean), 2); < } else { < $returnValue += pow(($arg - $aMean), 2); < } < ++$aCount; < } < } < < // Return < if ($returnValue === null) { < return Functions::NAN(); < } < < return $returnValue; < } < < return self::NA();
> return Statistical\Deviations::sumSquares(...$args);
} /** * EXPONDIST. * * Returns the exponential distribution. Use EXPONDIST to model the time between events, * such as how long an automated bank teller takes to deliver cash. For example, you can * use EXPONDIST to determine the probability that the process takes at most 1 minute. *
> * @deprecated 1.18.0 * @param float $value Value of the function > * Use the distribution() method in the Statistical\Distributions\Exponential class instead * @param float $lambda The parameter value > * @see Statistical\Distributions\Exponential::distribution() * @param bool $cumulative > *
*
< * @return float|string
> * @return array|float|string
*/ public static function EXPONDIST($value, $lambda, $cumulative) {
< $value = Functions::flattenSingleValue($value); < $lambda = Functions::flattenSingleValue($lambda); < $cumulative = Functions::flattenSingleValue($cumulative); < < if ((is_numeric($value)) && (is_numeric($lambda))) { < if (($value < 0) || ($lambda < 0)) { < return Functions::NAN(); < } < if ((is_numeric($cumulative)) || (is_bool($cumulative))) { < if ($cumulative) { < return 1 - exp(0 - $value * $lambda); < } < < return $lambda * exp(0 - $value * $lambda); < }
> return Statistical\Distributions\Exponential::distribution($value, $lambda, $cumulative);
}
< return Functions::VALUE();
> /** > * F.DIST. > * > * Returns the F probability distribution. > * You can use this function to determine whether two data sets have different degrees of diversity. > * For example, you can examine the test scores of men and women entering high school, and determine > * if the variability in the females is different from that found in the males. > * > * @deprecated 1.18.0 > * Use the distribution() method in the Statistical\Distributions\F class instead > * @see Statistical\Distributions\F::distribution() > * > * @param float $value Value of the function > * @param int $u The numerator degrees of freedom > * @param int $v The denominator degrees of freedom > * @param bool $cumulative If cumulative is TRUE, F.DIST returns the cumulative distribution function; > * if FALSE, it returns the probability density function. > * > * @return array|float|string > */ > public static function FDIST2($value, $u, $v, $cumulative) > { > return Statistical\Distributions\F::distribution($value, $u, $v, $cumulative);
} /** * FISHER. * * Returns the Fisher transformation at x. This transformation produces a function that * is normally distributed rather than skewed. Use this function to perform hypothesis * testing on the correlation coefficient. *
> * @deprecated 1.18.0 * @param float $value > * Use the distribution() method in the Statistical\Distributions\Fisher class instead * > * @see Statistical\Distributions\Fisher::distribution() * @return float|string > *
< * @return float|string
> * @return array|float|string
public static function FISHER($value) {
< $value = Functions::flattenSingleValue($value); < < if (is_numeric($value)) { < if (($value <= -1) || ($value >= 1)) { < return Functions::NAN(); < } < < return 0.5 * log((1 + $value) / (1 - $value)); < } < < return Functions::VALUE();
> return Statistical\Distributions\Fisher::distribution($value);
} /** * FISHERINV. * * Returns the inverse of the Fisher transformation. Use this transformation when * analyzing correlations between ranges or arrays of data. If y = FISHER(x), then * FISHERINV(y) = x. *
> * @deprecated 1.18.0 * @param float $value > * Use the inverse() method in the Statistical\Distributions\Fisher class instead * > * @see Statistical\Distributions\Fisher::inverse() * @return float|string > *
< * @return float|string
> * @return array|float|string
public static function FISHERINV($value) {
< $value = Functions::flattenSingleValue($value); < < if (is_numeric($value)) { < return (exp(2 * $value) - 1) / (exp(2 * $value) + 1); < } < < return Functions::VALUE();
> return Statistical\Distributions\Fisher::inverse($value);
} /** * FORECAST. * * Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value. *
> * @deprecated 1.18.0 * @param float $xValue Value of X for which we want to find Y > * Use the FORECAST() method in the Statistical\Trends class instead * @param mixed $yValues array of mixed Data Series Y > * @see Statistical\Trends::FORECAST() * @param mixed $xValues of mixed Data Series X > *
*
< * @return bool|float|string
> * @return array|bool|float|string
*/ public static function FORECAST($xValue, $yValues, $xValues) {
< $xValue = Functions::flattenSingleValue($xValue); < if (!is_numeric($xValue)) { < return Functions::VALUE(); < } elseif (!self::checkTrendArrays($yValues, $xValues)) { < return Functions::VALUE(); < } < $yValueCount = count($yValues); < $xValueCount = count($xValues); < < if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { < return Functions::NA(); < } elseif ($yValueCount == 1) { < return Functions::DIV0();
> return Trends::FORECAST($xValue, $yValues, $xValues);
}
< $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); < < return $bestFitLinear->getValueOfYForX($xValue);
> /** > * GAMMA. > * > * Returns the gamma function value. > * > * @deprecated 1.18.0 > * Use the gamma() method in the Statistical\Distributions\Gamma class instead > * @see Statistical\Distributions\Gamma::gamma() > * > * @param float $value > * > * @return array|float|string The result, or a string containing an error > */ > public static function GAMMAFunction($value) > { > return Statistical\Distributions\Gamma::gamma($value);
} /** * GAMMADIST. * * Returns the gamma distribution. *
> * @deprecated 1.18.0 * @param float $value Value at which you want to evaluate the distribution > * Use the distribution() method in the Statistical\Distributions\Gamma class instead * @param float $a Parameter to the distribution > * @see Statistical\Distributions\Gamma::distribution() * @param float $b Parameter to the distribution > *
* @param bool $cumulative *
< * @return float|string
> * @return array|float|string
*/ public static function GAMMADIST($value, $a, $b, $cumulative) {
< $value = Functions::flattenSingleValue($value); < $a = Functions::flattenSingleValue($a); < $b = Functions::flattenSingleValue($b); < < if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) { < if (($value < 0) || ($a <= 0) || ($b <= 0)) { < return Functions::NAN(); < } < if ((is_numeric($cumulative)) || (is_bool($cumulative))) { < if ($cumulative) { < return self::incompleteGamma($a, $value / $b) / self::gamma($a); < } < < return (1 / (pow($b, $a) * self::gamma($a))) * pow($value, $a - 1) * exp(0 - ($value / $b)); < } < } < < return Functions::VALUE();
> return Statistical\Distributions\Gamma::distribution($value, $a, $b, $cumulative);
} /** * GAMMAINV. *
< * Returns the inverse of the beta distribution.
> * Returns the inverse of the Gamma distribution. > * > * @deprecated 1.18.0 > * Use the inverse() method in the Statistical\Distributions\Gamma class instead > * @see Statistical\Distributions\Gamma::inverse()
* * @param float $probability Probability at which you want to evaluate the distribution * @param float $alpha Parameter to the distribution * @param float $beta Parameter to the distribution *
< * @return float|string
> * @return array|float|string
*/ public static function GAMMAINV($probability, $alpha, $beta) {
< $probability = Functions::flattenSingleValue($probability); < $alpha = Functions::flattenSingleValue($alpha); < $beta = Functions::flattenSingleValue($beta); < < if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) { < if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) { < return Functions::NAN(); < } < < $xLo = 0; < $xHi = $alpha * $beta * 5; < < $x = $xNew = 1; < $error = $pdf = 0; < $dx = 1024; < $i = 0; < < while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) { < // Apply Newton-Raphson step < $error = self::GAMMADIST($x, $alpha, $beta, true) - $probability; < if ($error < 0.0) { < $xLo = $x; < } else { < $xHi = $x; < } < $pdf = self::GAMMADIST($x, $alpha, $beta, false); < // Avoid division by zero < if ($pdf != 0.0) { < $dx = $error / $pdf; < $xNew = $x - $dx; < } < // If the NR fails to converge (which for example may be the < // case if the initial guess is too rough) we apply a bisection < // step to determine a more narrow interval around the root. < if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) { < $xNew = ($xLo + $xHi) / 2; < $dx = $xNew - $x; < } < $x = $xNew; < } < if ($i == self::MAX_ITERATIONS) { < return Functions::NA(); < } < < return $x; < } < < return Functions::VALUE();
> return Statistical\Distributions\Gamma::inverse($probability, $alpha, $beta);
} /** * GAMMALN. * * Returns the natural logarithm of the gamma function. *
> * @deprecated 1.18.0 * @param float $value > * Use the ln() method in the Statistical\Distributions\Gamma class instead * > * @see Statistical\Distributions\Gamma::ln() * @return float|string > *
< * @return float|string
> * @return array|float|string
public static function GAMMALN($value) {
< $value = Functions::flattenSingleValue($value); < < if (is_numeric($value)) { < if ($value <= 0) { < return Functions::NAN();
> return Statistical\Distributions\Gamma::ln($value);
}
< return log(self::gamma($value)); < } < < return Functions::VALUE();
> /** > * GAUSS. > * > * Calculates the probability that a member of a standard normal population will fall between > * the mean and z standard deviations from the mean. > * > * @deprecated 1.18.0 > * Use the gauss() method in the Statistical\Distributions\StandardNormal class instead > * @see Statistical\Distributions\StandardNormal::gauss() > * > * @param float $value > * > * @return array|float|string The result, or a string containing an error > */ > public static function GAUSS($value) > { > return Statistical\Distributions\StandardNormal::gauss($value);
} /** * GEOMEAN. * * Returns the geometric mean of an array or range of positive data. For example, you * can use GEOMEAN to calculate average growth rate given compound interest with * variable rates. * * Excel Function: * GEOMEAN(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.18.0 > * Use the geometric() method in the Statistical\Averages\Mean class instead > * @see Statistical\Averages\Mean::geometric()
* * @param mixed ...$args Data values * * @return float|string */ public static function GEOMEAN(...$args) {
< $aArgs = Functions::flattenArray($args); < < $aMean = MathTrig::PRODUCT($aArgs); < if (is_numeric($aMean) && ($aMean > 0)) { < $aCount = self::COUNT($aArgs); < if (self::MIN($aArgs) > 0) { < return pow($aMean, (1 / $aCount)); < } < } < < return Functions::NAN();
> return Statistical\Averages\Mean::geometric(...$args);
} /** * GROWTH. * * Returns values along a predicted exponential Trend *
> * @deprecated 1.18.0 * @param mixed[] $yValues Data Series Y > * Use the GROWTH() method in the Statistical\Trends class instead * @param mixed[] $xValues Data Series X > * @see Statistical\Trends::GROWTH() * @param mixed[] $newValues Values of X for which we want to find Y > *
* @param bool $const a logical value specifying whether to force the intersect to equal 0 *
< * @return array of float
> * @return float[]
*/ public static function GROWTH($yValues, $xValues = [], $newValues = [], $const = true) {
< $yValues = Functions::flattenArray($yValues); < $xValues = Functions::flattenArray($xValues); < $newValues = Functions::flattenArray($newValues); < $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const); < < $bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const); < if (empty($newValues)) { < $newValues = $bestFitExponential->getXValues(); < } < < $returnArray = []; < foreach ($newValues as $xValue) { < $returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue); < } < < return $returnArray;
> return Trends::GROWTH($yValues, $xValues, $newValues, $const);
} /** * HARMEAN. * * Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the * arithmetic mean of reciprocals. * * Excel Function: * HARMEAN(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.18.0 > * Use the harmonic() method in the Statistical\Averages\Mean class instead > * @see Statistical\Averages\Mean::harmonic()
* * @param mixed ...$args Data values * * @return float|string */ public static function HARMEAN(...$args) {
< // Return value < $returnValue = 0; < < // Loop through arguments < $aArgs = Functions::flattenArray($args); < if (self::MIN($aArgs) < 0) { < return Functions::NAN(); < } < $aCount = 0; < foreach ($aArgs as $arg) { < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < if ($arg <= 0) { < return Functions::NAN(); < } < $returnValue += (1 / $arg); < ++$aCount; < } < } < < // Return < if ($aCount > 0) { < return 1 / ($returnValue / $aCount); < } < < return Functions::NA();
> return Statistical\Averages\Mean::harmonic(...$args);
} /** * HYPGEOMDIST. * * Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of * sample successes, given the sample size, population successes, and population size. *
< * @param float $sampleSuccesses Number of successes in the sample < * @param float $sampleNumber Size of the sample < * @param float $populationSuccesses Number of successes in the population < * @param float $populationNumber Population size
> * @deprecated 1.18.0 > * Use the distribution() method in the Statistical\Distributions\HyperGeometric class instead > * @see Statistical\Distributions\HyperGeometric::distribution() > * > * @param mixed $sampleSuccesses Number of successes in the sample > * @param mixed $sampleNumber Size of the sample > * @param mixed $populationSuccesses Number of successes in the population > * @param mixed $populationNumber Population size
*
< * @return float|string
> * @return array|float|string
*/ public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber) {
< $sampleSuccesses = floor(Functions::flattenSingleValue($sampleSuccesses)); < $sampleNumber = floor(Functions::flattenSingleValue($sampleNumber)); < $populationSuccesses = floor(Functions::flattenSingleValue($populationSuccesses)); < $populationNumber = floor(Functions::flattenSingleValue($populationNumber)); < < if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) { < if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) { < return Functions::NAN(); < } < if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) { < return Functions::NAN(); < } < if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) { < return Functions::NAN(); < } < < return MathTrig::COMBIN($populationSuccesses, $sampleSuccesses) * < MathTrig::COMBIN($populationNumber - $populationSuccesses, $sampleNumber - $sampleSuccesses) / < MathTrig::COMBIN($populationNumber, $sampleNumber); < } < < return Functions::VALUE();
> return Statistical\Distributions\HyperGeometric::distribution( > $sampleSuccesses, > $sampleNumber, > $populationSuccesses, > $populationNumber > );
} /** * INTERCEPT. * * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values. *
> * @deprecated 1.18.0 * @param mixed[] $yValues Data Series Y > * Use the INTERCEPT() method in the Statistical\Trends class instead * @param mixed[] $xValues Data Series X > * @see Statistical\Trends::INTERCEPT() * > *
* @return float|string */ public static function INTERCEPT($yValues, $xValues) {
< if (!self::checkTrendArrays($yValues, $xValues)) { < return Functions::VALUE(); < } < $yValueCount = count($yValues); < $xValueCount = count($xValues); < < if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { < return Functions::NA(); < } elseif ($yValueCount == 1) { < return Functions::DIV0(); < } < < $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); < < return $bestFitLinear->getIntersect();
> return Trends::INTERCEPT($yValues, $xValues);
} /** * KURT. * * Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness * or flatness of a distribution compared with the normal distribution. Positive * kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a * relatively flat distribution. *
> * @deprecated 1.18.0 * @param array ...$args Data Series > * Use the kurtosis() method in the Statistical\Deviations class instead * > * @see Statistical\Deviations::kurtosis() * @return float|string > *
*/ public static function KURT(...$args) {
< $aArgs = Functions::flattenArrayIndexed($args); < $mean = self::AVERAGE($aArgs); < $stdDev = self::STDEV($aArgs); < < if ($stdDev > 0) { < $count = $summer = 0; < // Loop through arguments < foreach ($aArgs as $k => $arg) { < if ((is_bool($arg)) && < (!Functions::isMatrixValue($k))) { < } else { < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < $summer += pow((($arg - $mean) / $stdDev), 4); < ++$count; < } < } < } < < // Return < if ($count > 3) { < return $summer * ($count * ($count + 1) / (($count - 1) * ($count - 2) * ($count - 3))) - (3 * pow($count - 1, 2) / (($count - 2) * ($count - 3))); < } < } < < return Functions::DIV0();
> return Statistical\Deviations::kurtosis(...$args);
} /** * LARGE. * * Returns the nth largest value in a data set. You can use this function to * select a value based on its relative standing. * * Excel Function: * LARGE(value1[,value2[, ...]],entry) *
< * @category Statistical Functions
> * @deprecated 1.18.0 > * Use the large() method in the Statistical\Size class instead > * @see Statistical\Size::large()
* * @param mixed $args Data values
< * @param int $entry Position (ordered from the largest) in the array or range of data to return
*
< * @return float
> * @return float|string The result, or a string containing an error
*/ public static function LARGE(...$args) {
< $aArgs = Functions::flattenArray($args); < < // Calculate < $entry = floor(array_pop($aArgs)); < < if ((is_numeric($entry)) && (!is_string($entry))) { < $mArgs = []; < foreach ($aArgs as $arg) { < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < $mArgs[] = $arg; < } < } < $count = self::COUNT($mArgs); < $entry = floor(--$entry); < if (($entry < 0) || ($entry >= $count) || ($count == 0)) { < return Functions::NAN(); < } < rsort($mArgs); < < return $mArgs[$entry]; < } < < return Functions::VALUE();
> return Statistical\Size::large(...$args);
} /** * LINEST. * * Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data, * and then returns an array that describes the line. *
> * @deprecated 1.18.0 * @param mixed[] $yValues Data Series Y > * Use the LINEST() method in the Statistical\Trends class instead * @param null|mixed[] $xValues Data Series X > * @see Statistical\Trends::LINEST() * @param bool $const a logical value specifying whether to force the intersect to equal 0 > *
* @param bool $stats a logical value specifying whether to return additional regression statistics *
< * @return array
> * @return array|int|string The result, or a string containing an error
*/ public static function LINEST($yValues, $xValues = null, $const = true, $stats = false) {
< $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const); < $stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats); < if ($xValues === null) { < $xValues = range(1, count(Functions::flattenArray($yValues))); < } < < if (!self::checkTrendArrays($yValues, $xValues)) { < return Functions::VALUE(); < } < $yValueCount = count($yValues); < $xValueCount = count($xValues); < < if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { < return Functions::NA(); < } elseif ($yValueCount == 1) { < return 0; < } < < $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const); < if ($stats) { < return [ < [ < $bestFitLinear->getSlope(), < $bestFitLinear->getSlopeSE(), < $bestFitLinear->getGoodnessOfFit(), < $bestFitLinear->getF(), < $bestFitLinear->getSSRegression(), < ], < [ < $bestFitLinear->getIntersect(), < $bestFitLinear->getIntersectSE(), < $bestFitLinear->getStdevOfResiduals(), < $bestFitLinear->getDFResiduals(), < $bestFitLinear->getSSResiduals(), < ], < ]; < } < < return [ < $bestFitLinear->getSlope(), < $bestFitLinear->getIntersect(), < ];
> return Trends::LINEST($yValues, $xValues, $const, $stats);
} /** * LOGEST. * * Calculates an exponential curve that best fits the X and Y data series, * and then returns an array that describes the line. *
> * @deprecated 1.18.0 * @param mixed[] $yValues Data Series Y > * Use the LOGEST() method in the Statistical\Trends class instead * @param null|mixed[] $xValues Data Series X > * @see Statistical\Trends::LOGEST() * @param bool $const a logical value specifying whether to force the intersect to equal 0 > *
* @param bool $stats a logical value specifying whether to return additional regression statistics *
< * @return array
> * @return array|int|string The result, or a string containing an error
*/ public static function LOGEST($yValues, $xValues = null, $const = true, $stats = false) {
< $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const); < $stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats); < if ($xValues === null) { < $xValues = range(1, count(Functions::flattenArray($yValues))); < } < < if (!self::checkTrendArrays($yValues, $xValues)) { < return Functions::VALUE(); < } < $yValueCount = count($yValues); < $xValueCount = count($xValues); < < foreach ($yValues as $value) { < if ($value <= 0.0) { < return Functions::NAN(); < } < } < < if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { < return Functions::NA(); < } elseif ($yValueCount == 1) { < return 1; < } < < $bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const); < if ($stats) { < return [ < [ < $bestFitExponential->getSlope(), < $bestFitExponential->getSlopeSE(), < $bestFitExponential->getGoodnessOfFit(), < $bestFitExponential->getF(), < $bestFitExponential->getSSRegression(), < ], < [ < $bestFitExponential->getIntersect(), < $bestFitExponential->getIntersectSE(), < $bestFitExponential->getStdevOfResiduals(), < $bestFitExponential->getDFResiduals(), < $bestFitExponential->getSSResiduals(), < ], < ]; < } < < return [ < $bestFitExponential->getSlope(), < $bestFitExponential->getIntersect(), < ];
> return Trends::LOGEST($yValues, $xValues, $const, $stats);
} /** * LOGINV. * * Returns the inverse of the normal cumulative distribution *
> * @deprecated 1.18.0 * @param float $probability > * Use the inverse() method in the Statistical\Distributions\LogNormal class instead * @param float $mean > * @see Statistical\Distributions\LogNormal::inverse() * @param float $stdDev > *
*
< * @return float
> * @return array|float|string The result, or a string containing an error
*
< * @todo Try implementing P J Acklam's refinement algorithm for greater
> * @TODO Try implementing P J Acklam's refinement algorithm for greater
* accuracy if I can get my head round the mathematics * (as described at) http://home.online.no/~pjacklam/notes/invnorm/ */ public static function LOGINV($probability, $mean, $stdDev) {
< $probability = Functions::flattenSingleValue($probability); < $mean = Functions::flattenSingleValue($mean); < $stdDev = Functions::flattenSingleValue($stdDev); < < if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) { < if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) { < return Functions::NAN(); < } < < return exp($mean + $stdDev * self::NORMSINV($probability)); < } < < return Functions::VALUE();
> return Statistical\Distributions\LogNormal::inverse($probability, $mean, $stdDev);
} /** * LOGNORMDIST. * * Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed * with parameters mean and standard_dev. *
> * @deprecated 1.18.0 * @param float $value > * Use the cumulative() method in the Statistical\Distributions\LogNormal class instead * @param float $mean > * @see Statistical\Distributions\LogNormal::cumulative() * @param float $stdDev > *
*
< * @return float
> * @return array|float|string The result, or a string containing an error
*/ public static function LOGNORMDIST($value, $mean, $stdDev) {
< $value = Functions::flattenSingleValue($value); < $mean = Functions::flattenSingleValue($mean); < $stdDev = Functions::flattenSingleValue($stdDev); < < if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { < if (($value <= 0) || ($stdDev <= 0)) { < return Functions::NAN();
> return Statistical\Distributions\LogNormal::cumulative($value, $mean, $stdDev);
}
< return self::NORMSDIST((log($value) - $mean) / $stdDev); < } < < return Functions::VALUE();
> /** > * LOGNORM.DIST. > * > * Returns the lognormal distribution of x, where ln(x) is normally distributed > * with parameters mean and standard_dev. > * > * @deprecated 1.18.0 > * Use the distribution() method in the Statistical\Distributions\LogNormal class instead > * @see Statistical\Distributions\LogNormal::distribution() > * > * @param float $value > * @param float $mean > * @param float $stdDev > * @param bool $cumulative > * > * @return array|float|string The result, or a string containing an error > */ > public static function LOGNORMDIST2($value, $mean, $stdDev, $cumulative = false) > { > return Statistical\Distributions\LogNormal::distribution($value, $mean, $stdDev, $cumulative);
} /** * MAX. * * MAX returns the value of the element of the values passed that has the highest value, * with negative numbers considered smaller than positive numbers. * * Excel Function:
< * MAX(value1[,value2[, ...]])
> * max(value1[,value2[, ...]])
*
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the MAX() method in the Statistical\Maximum class instead > * @see Statistical\Maximum::max()
* * @param mixed ...$args Data values * * @return float */ public static function MAX(...$args) {
< $returnValue = null; < < // Loop through arguments < $aArgs = Functions::flattenArray($args); < foreach ($aArgs as $arg) { < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < if (($returnValue === null) || ($arg > $returnValue)) { < $returnValue = $arg; < } < } < } < < if ($returnValue === null) { < return 0; < } < < return $returnValue;
> return Maximum::max(...$args);
} /** * MAXA. * * Returns the greatest value in a list of arguments, including numbers, text, and logical values * * Excel Function:
< * MAXA(value1[,value2[, ...]])
> * maxA(value1[,value2[, ...]])
*
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the MAXA() method in the Statistical\Maximum class instead > * @see Statistical\Maximum::maxA()
* * @param mixed ...$args Data values * * @return float */ public static function MAXA(...$args) {
< $returnValue = null; < < // Loop through arguments < $aArgs = Functions::flattenArray($args); < foreach ($aArgs as $arg) { < // Is it a numeric value? < if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { < if (is_bool($arg)) { < $arg = (int) $arg; < } elseif (is_string($arg)) { < $arg = 0; < } < if (($returnValue === null) || ($arg > $returnValue)) { < $returnValue = $arg; < } < } < } < < if ($returnValue === null) { < return 0; < } < < return $returnValue;
> return Maximum::maxA(...$args);
} /** * MAXIFS. * * Counts the maximum value within a range of cells that contain numbers within the list of arguments * * Excel Function: * MAXIFS(max_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the MAXIFS() method in the Statistical\Conditional class instead > * @see Statistical\Conditional::MAXIFS()
* * @param mixed $args Data range and criterias *
< * @return float
> * @return null|float|string
*/ public static function MAXIFS(...$args) {
< $arrayList = $args; < < // Return value < $returnValue = null; < < $maxArgs = Functions::flattenArray(array_shift($arrayList)); < $aArgsArray = []; < $conditions = []; < < while (count($arrayList) > 0) { < $aArgsArray[] = Functions::flattenArray(array_shift($arrayList)); < $conditions[] = Functions::ifCondition(array_shift($arrayList)); < } < < // Loop through each arg and see if arguments and conditions are true < foreach ($maxArgs as $index => $value) { < $valid = true; < < foreach ($conditions as $cidx => $condition) { < $arg = $aArgsArray[$cidx][$index]; < < // Loop through arguments < if (!is_numeric($arg)) { < $arg = Calculation::wrapResult(strtoupper($arg)); < } < $testCondition = '=' . $arg . $condition; < if (!Calculation::getInstance()->_calculateFormulaValue($testCondition)) { < // Is not a value within our criteria < $valid = false; < < break; // if false found, don't need to check other conditions < } < } < < if ($valid) { < $returnValue = $returnValue === null ? $value : max($value, $returnValue); < } < } < < // Return < return $returnValue;
> return Conditional::MAXIFS(...$args);
} /** * MEDIAN. * * Returns the median of the given numbers. The median is the number in the middle of a set of numbers. * * Excel Function: * MEDIAN(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.18.0 > * Use the median() method in the Statistical\Averages class instead > * @see Statistical\Averages::median()
* * @param mixed ...$args Data values *
< * @return float
> * @return float|string The result, or a string containing an error
*/ public static function MEDIAN(...$args) {
< $returnValue = Functions::NAN(); < < $mArgs = []; < // Loop through arguments < $aArgs = Functions::flattenArray($args); < foreach ($aArgs as $arg) { < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < $mArgs[] = $arg; < } < } < < $mValueCount = count($mArgs); < if ($mValueCount > 0) { < sort($mArgs, SORT_NUMERIC); < $mValueCount = $mValueCount / 2; < if ($mValueCount == floor($mValueCount)) { < $returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2; < } else { < $mValueCount = floor($mValueCount); < $returnValue = $mArgs[$mValueCount]; < } < } < < return $returnValue;
> return Statistical\Averages::median(...$args);
} /** * MIN. * * MIN returns the value of the element of the values passed that has the smallest value, * with negative numbers considered smaller than positive numbers. * * Excel Function: * MIN(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the min() method in the Statistical\Minimum class instead > * @see Statistical\Minimum::min()
* * @param mixed ...$args Data values * * @return float */ public static function MIN(...$args) {
< $returnValue = null; < < // Loop through arguments < $aArgs = Functions::flattenArray($args); < foreach ($aArgs as $arg) { < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < if (($returnValue === null) || ($arg < $returnValue)) { < $returnValue = $arg; < } < } < } < < if ($returnValue === null) { < return 0; < } < < return $returnValue;
> return Minimum::min(...$args);
} /** * MINA. * * Returns the smallest value in a list of arguments, including numbers, text, and logical values * * Excel Function: * MINA(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the minA() method in the Statistical\Minimum class instead > * @see Statistical\Minimum::minA()
* * @param mixed ...$args Data values * * @return float */ public static function MINA(...$args) {
< $returnValue = null; < < // Loop through arguments < $aArgs = Functions::flattenArray($args); < foreach ($aArgs as $arg) { < // Is it a numeric value? < if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { < if (is_bool($arg)) { < $arg = (int) $arg; < } elseif (is_string($arg)) { < $arg = 0; < } < if (($returnValue === null) || ($arg < $returnValue)) { < $returnValue = $arg; < } < } < } < < if ($returnValue === null) { < return 0; < } < < return $returnValue;
> return Minimum::minA(...$args);
} /** * MINIFS. * * Returns the minimum value within a range of cells that contain numbers within the list of arguments * * Excel Function: * MINIFS(min_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the MINIFS() method in the Statistical\Conditional class instead > * @see Statistical\Conditional::MINIFS()
* * @param mixed $args Data range and criterias *
< * @return float
> * @return null|float|string
*/ public static function MINIFS(...$args) {
< $arrayList = $args; < < // Return value < $returnValue = null; < < $minArgs = Functions::flattenArray(array_shift($arrayList)); < $aArgsArray = []; < $conditions = []; < < while (count($arrayList) > 0) { < $aArgsArray[] = Functions::flattenArray(array_shift($arrayList)); < $conditions[] = Functions::ifCondition(array_shift($arrayList)); < } < < // Loop through each arg and see if arguments and conditions are true < foreach ($minArgs as $index => $value) { < $valid = true; < < foreach ($conditions as $cidx => $condition) { < $arg = $aArgsArray[$cidx][$index]; < < // Loop through arguments < if (!is_numeric($arg)) { < $arg = Calculation::wrapResult(strtoupper($arg)); < } < $testCondition = '=' . $arg . $condition; < if (!Calculation::getInstance()->_calculateFormulaValue($testCondition)) { < // Is not a value within our criteria < $valid = false; < < break; // if false found, don't need to check other conditions < } < } < < if ($valid) { < $returnValue = $returnValue === null ? $value : min($value, $returnValue); < } < } < < // Return < return $returnValue; < } < < // < // Special variant of array_count_values that isn't limited to strings and integers, < // but can work with floating point numbers as values < // < private static function modeCalc($data) < { < $frequencyArray = []; < foreach ($data as $datum) { < $found = false; < foreach ($frequencyArray as $key => $value) { < if ((string) $value['value'] == (string) $datum) { < ++$frequencyArray[$key]['frequency']; < $found = true; < < break; < } < } < if (!$found) { < $frequencyArray[] = [ < 'value' => $datum, < 'frequency' => 1, < ]; < } < } < < foreach ($frequencyArray as $key => $value) { < $frequencyList[$key] = $value['frequency']; < $valueList[$key] = $value['value']; < } < array_multisort($frequencyList, SORT_DESC, $valueList, SORT_ASC, SORT_NUMERIC, $frequencyArray); < < if ($frequencyArray[0]['frequency'] == 1) { < return Functions::NA(); < } < < return $frequencyArray[0]['value'];
> return Conditional::MINIFS(...$args);
} /** * MODE. * * Returns the most frequently occurring, or repetitive, value in an array or range of data * * Excel Function: * MODE(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.18.0 > * Use the mode() method in the Statistical\Averages class instead > * @see Statistical\Averages::mode()
* * @param mixed ...$args Data values *
< * @return float
> * @return float|string The result, or a string containing an error
*/ public static function MODE(...$args) {
< $returnValue = Functions::NA(); < < // Loop through arguments < $aArgs = Functions::flattenArray($args); < < $mArgs = []; < foreach ($aArgs as $arg) { < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < $mArgs[] = $arg; < } < } < < if (!empty($mArgs)) { < return self::modeCalc($mArgs); < } < < return $returnValue;
> return Statistical\Averages::mode(...$args);
} /** * NEGBINOMDIST. * * Returns the negative binomial distribution. NEGBINOMDIST returns the probability that * there will be number_f failures before the number_s-th success, when the constant * probability of a success is probability_s. This function is similar to the binomial * distribution, except that the number of successes is fixed, and the number of trials is * variable. Like the binomial, trials are assumed to be independent. *
< * @param float $failures Number of Failures < * @param float $successes Threshold number of Successes < * @param float $probability Probability of success on each trial
> * @deprecated 1.18.0 > * Use the negative() method in the Statistical\Distributions\Binomial class instead > * @see Statistical\Distributions\Binomial::negative() > * > * @param mixed $failures Number of Failures > * @param mixed $successes Threshold number of Successes > * @param mixed $probability Probability of success on each trial
*
< * @return float
> * @return array|float|string The result, or a string containing an error
*/ public static function NEGBINOMDIST($failures, $successes, $probability) {
< $failures = floor(Functions::flattenSingleValue($failures)); < $successes = floor(Functions::flattenSingleValue($successes)); < $probability = Functions::flattenSingleValue($probability); < < if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) { < if (($failures < 0) || ($successes < 1)) { < return Functions::NAN(); < } elseif (($probability < 0) || ($probability > 1)) { < return Functions::NAN(); < } < if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { < if (($failures + $successes - 1) <= 0) { < return Functions::NAN(); < } < } < < return (MathTrig::COMBIN($failures + $successes - 1, $successes - 1)) * (pow($probability, $successes)) * (pow(1 - $probability, $failures)); < } < < return Functions::VALUE();
> return Statistical\Distributions\Binomial::negative($failures, $successes, $probability);
} /** * NORMDIST. * * Returns the normal distribution for the specified mean and standard deviation. This * function has a very wide range of applications in statistics, including hypothesis * testing. *
< * @param float $value < * @param float $mean Mean Value < * @param float $stdDev Standard Deviation < * @param bool $cumulative
> * @deprecated 1.18.0 > * Use the distribution() method in the Statistical\Distributions\Normal class instead > * @see Statistical\Distributions\Normal::distribution() > * > * @param mixed $value > * @param mixed $mean Mean Value > * @param mixed $stdDev Standard Deviation > * @param mixed $cumulative
*
< * @return float
> * @return array|float|string The result, or a string containing an error
*/ public static function NORMDIST($value, $mean, $stdDev, $cumulative) {
< $value = Functions::flattenSingleValue($value); < $mean = Functions::flattenSingleValue($mean); < $stdDev = Functions::flattenSingleValue($stdDev); < < if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { < if ($stdDev < 0) { < return Functions::NAN(); < } < if ((is_numeric($cumulative)) || (is_bool($cumulative))) { < if ($cumulative) { < return 0.5 * (1 + Engineering::erfVal(($value - $mean) / ($stdDev * sqrt(2)))); < } < < return (1 / (self::SQRT2PI * $stdDev)) * exp(0 - (pow($value - $mean, 2) / (2 * ($stdDev * $stdDev)))); < } < } < < return Functions::VALUE();
> return Statistical\Distributions\Normal::distribution($value, $mean, $stdDev, $cumulative);
} /** * NORMINV. * * Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation. *
< * @param float $probability < * @param float $mean Mean Value < * @param float $stdDev Standard Deviation
> * @deprecated 1.18.0 > * Use the inverse() method in the Statistical\Distributions\Normal class instead > * @see Statistical\Distributions\Normal::inverse() > * > * @param mixed $probability > * @param mixed $mean Mean Value > * @param mixed $stdDev Standard Deviation
*
< * @return float
> * @return array|float|string The result, or a string containing an error
*/ public static function NORMINV($probability, $mean, $stdDev) {
< $probability = Functions::flattenSingleValue($probability); < $mean = Functions::flattenSingleValue($mean); < $stdDev = Functions::flattenSingleValue($stdDev); < < if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) { < if (($probability < 0) || ($probability > 1)) { < return Functions::NAN(); < } < if ($stdDev < 0) { < return Functions::NAN(); < } < < return (self::inverseNcdf($probability) * $stdDev) + $mean; < } < < return Functions::VALUE();
> return Statistical\Distributions\Normal::inverse($probability, $mean, $stdDev);
} /** * NORMSDIST. * * Returns the standard normal cumulative distribution function. The distribution has * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a * table of standard normal curve areas. *
< * @param float $value
> * @deprecated 1.18.0 > * Use the cumulative() method in the Statistical\Distributions\StandardNormal class instead > * @see Statistical\Distributions\StandardNormal::cumulative()
*
< * @return float
> * @param mixed $value > * > * @return array|float|string The result, or a string containing an error
*/ public static function NORMSDIST($value) {
< $value = Functions::flattenSingleValue($value);
> return Statistical\Distributions\StandardNormal::cumulative($value); > }
< return self::NORMDIST($value, 0, 1, true);
> /** > * NORM.S.DIST. > * > * Returns the standard normal cumulative distribution function. The distribution has > * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a > * table of standard normal curve areas. > * > * @deprecated 1.18.0 > * Use the distribution() method in the Statistical\Distributions\StandardNormal class instead > * @see Statistical\Distributions\StandardNormal::distribution() > * > * @param mixed $value > * @param mixed $cumulative > * > * @return array|float|string The result, or a string containing an error > */ > public static function NORMSDIST2($value, $cumulative) > { > return Statistical\Distributions\StandardNormal::distribution($value, $cumulative);
} /** * NORMSINV. * * Returns the inverse of the standard normal cumulative distribution *
< * @param float $value
> * @deprecated 1.18.0 > * Use the inverse() method in the Statistical\Distributions\StandardNormal class instead > * @see Statistical\Distributions\StandardNormal::inverse()
*
< * @return float
> * @param mixed $value > * > * @return array|float|string The result, or a string containing an error
*/ public static function NORMSINV($value) {
< return self::NORMINV($value, 0, 1);
> return Statistical\Distributions\StandardNormal::inverse($value);
} /** * PERCENTILE. * * Returns the nth percentile of values in a range.. * * Excel Function: * PERCENTILE(value1[,value2[, ...]],entry) *
< * @category Statistical Functions
> * @deprecated 1.18.0 > * Use the PERCENTILE() method in the Statistical\Percentiles class instead > * @see Statistical\Percentiles::PERCENTILE()
* * @param mixed $args Data values
< * @param float $entry Percentile value in the range 0..1, inclusive.
*
< * @return float
> * @return float|string The result, or a string containing an error
*/ public static function PERCENTILE(...$args) {
< $aArgs = Functions::flattenArray($args); < < // Calculate < $entry = array_pop($aArgs); < < if ((is_numeric($entry)) && (!is_string($entry))) { < if (($entry < 0) || ($entry > 1)) { < return Functions::NAN(); < } < $mArgs = []; < foreach ($aArgs as $arg) { < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < $mArgs[] = $arg; < } < } < $mValueCount = count($mArgs); < if ($mValueCount > 0) { < sort($mArgs); < $count = self::COUNT($mArgs); < $index = $entry * ($count - 1); < $iBase = floor($index); < if ($index == $iBase) { < return $mArgs[$index]; < } < $iNext = $iBase + 1; < $iProportion = $index - $iBase; < < return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion); < } < } < < return Functions::VALUE();
> return Statistical\Percentiles::PERCENTILE(...$args);
} /** * PERCENTRANK. * * Returns the rank of a value in a data set as a percentage of the data set.
> * Note that the returned rank is simply rounded to the appropriate significant digits, * > * rather than floored (as MS Excel), so value 3 for a value set of 1, 2, 3, 4 will return * @param float[] $valueSet An array of, or a reference to, a list of numbers > * 0.667 rather than 0.666 * @param int $value the number whose rank you want to find > * * @param int $significance the number of significant digits for the returned percentage value > * @deprecated 1.18.0 * > * Use the PERCENTRANK() method in the Statistical\Percentiles class instead * @return float > * @see Statistical\Percentiles::PERCENTRANK() */ > * public static function PERCENTRANK($valueSet, $value, $significance = 3) > * @param mixed $valueSet An array of, or a reference to, a list of numbers { > * @param mixed $value the number whose rank you want to find $valueSet = Functions::flattenArray($valueSet); > * @param mixed $significance the number of significant digits for the returned percentage value
< * @param float[] $valueSet An array of, or a reference to, a list of numbers < * @param int $value the number whose rank you want to find < * @param int $significance the number of significant digits for the returned percentage value < * < * @return float
> * @return float|string (string if result is an error)
< $valueSet = Functions::flattenArray($valueSet); < $value = Functions::flattenSingleValue($value); < $significance = ($significance === null) ? 3 : (int) Functions::flattenSingleValue($significance); < < foreach ($valueSet as $key => $valueEntry) { < if (!is_numeric($valueEntry)) { < unset($valueSet[$key]); < } < } < sort($valueSet, SORT_NUMERIC); < $valueCount = count($valueSet); < if ($valueCount == 0) { < return Functions::NAN(); < } < < $valueAdjustor = $valueCount - 1; < if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) { < return Functions::NA(); < } < < $pos = array_search($value, $valueSet); < if ($pos === false) { < $pos = 0; < $testValue = $valueSet[0]; < while ($testValue < $value) { < $testValue = $valueSet[++$pos]; < } < --$pos; < $pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos])); < } < < return round($pos / $valueAdjustor, $significance);
> return Statistical\Percentiles::PERCENTRANK($valueSet, $value, $significance);
* selected from number objects. A permutation is any set or subset of objects or * events where internal order is significant. Permutations are different from * combinations, for which the internal order is not significant. Use this function * for lottery-style probability calculations. *
> * @deprecated 1.17.0 * @param int $numObjs Number of different objects > * Use the PERMUT() method in the Statistical\Permutations class instead * @param int $numInSet Number of objects in each permutation > * @see Statistical\Permutations::PERMUT() * > *
< * @return int|string Number of permutations
> * @return array|float|int|string Number of permutations, or a string containing an error
*/ public static function PERMUT($numObjs, $numInSet) {
< $numObjs = Functions::flattenSingleValue($numObjs); < $numInSet = Functions::flattenSingleValue($numInSet); < < if ((is_numeric($numObjs)) && (is_numeric($numInSet))) { < $numInSet = floor($numInSet); < if ($numObjs < $numInSet) { < return Functions::NAN(); < } < < return round(MathTrig::FACT($numObjs) / MathTrig::FACT($numObjs - $numInSet)); < } < < return Functions::VALUE();
> return Permutations::PERMUT($numObjs, $numInSet);
} /** * POISSON. * * Returns the Poisson distribution. A common application of the Poisson distribution * is predicting the number of events over a specific time, such as the number of * cars arriving at a toll plaza in 1 minute. *
< * @param float $value < * @param float $mean Mean Value < * @param bool $cumulative
> * @deprecated 1.18.0 > * Use the distribution() method in the Statistical\Distributions\Poisson class instead > * @see Statistical\Distributions\Poisson::distribution() > * > * @param mixed $value > * @param mixed $mean Mean Value > * @param mixed $cumulative
*
< * @return float
> * @return array|float|string The result, or a string containing an error
*/ public static function POISSON($value, $mean, $cumulative) {
< $value = Functions::flattenSingleValue($value); < $mean = Functions::flattenSingleValue($mean); < < if ((is_numeric($value)) && (is_numeric($mean))) { < if (($value < 0) || ($mean <= 0)) { < return Functions::NAN(); < } < if ((is_numeric($cumulative)) || (is_bool($cumulative))) { < if ($cumulative) { < $summer = 0; < $floor = floor($value); < for ($i = 0; $i <= $floor; ++$i) { < $summer += pow($mean, $i) / MathTrig::FACT($i); < } < < return exp(0 - $mean) * $summer; < } < < return (exp(0 - $mean) * pow($mean, $value)) / MathTrig::FACT($value); < } < } < < return Functions::VALUE();
> return Statistical\Distributions\Poisson::distribution($value, $mean, $cumulative);
} /** * QUARTILE. * * Returns the quartile of a data set. * * Excel Function: * QUARTILE(value1[,value2[, ...]],entry) *
< * @category Statistical Functions
> * @deprecated 1.18.0 > * Use the QUARTILE() method in the Statistical\Percentiles class instead > * @see Statistical\Percentiles::QUARTILE()
* * @param mixed $args Data values
< * @param int $entry Quartile value in the range 1..3, inclusive.
*
< * @return float
> * @return float|string The result, or a string containing an error
*/ public static function QUARTILE(...$args) {
< $aArgs = Functions::flattenArray($args); < < // Calculate < $entry = floor(array_pop($aArgs)); < < if ((is_numeric($entry)) && (!is_string($entry))) { < $entry /= 4; < if (($entry < 0) || ($entry > 1)) { < return Functions::NAN(); < } < < return self::PERCENTILE($aArgs, $entry); < } < < return Functions::VALUE();
> return Statistical\Percentiles::QUARTILE(...$args);
} /** * RANK. * * Returns the rank of a number in a list of numbers. *
< * @param int $value the number whose rank you want to find < * @param float[] $valueSet An array of, or a reference to, a list of numbers < * @param int $order Order to sort the values in the value set
> * @deprecated 1.18.0 > * Use the RANK() method in the Statistical\Percentiles class instead > * @see Statistical\Percentiles::RANK() > * > * @param mixed $value the number whose rank you want to find > * @param mixed $valueSet An array of, or a reference to, a list of numbers > * @param mixed $order Order to sort the values in the value set
*
< * @return float
> * @return float|string The result, or a string containing an error
*/ public static function RANK($value, $valueSet, $order = 0) {
< $value = Functions::flattenSingleValue($value); < $valueSet = Functions::flattenArray($valueSet); < $order = ($order === null) ? 0 : (int) Functions::flattenSingleValue($order); < < foreach ($valueSet as $key => $valueEntry) { < if (!is_numeric($valueEntry)) { < unset($valueSet[$key]); < } < } < < if ($order == 0) { < rsort($valueSet, SORT_NUMERIC); < } else { < sort($valueSet, SORT_NUMERIC); < } < $pos = array_search($value, $valueSet); < if ($pos === false) { < return Functions::NA(); < } < < return ++$pos;
> return Statistical\Percentiles::RANK($value, $valueSet, $order);
} /** * RSQ. * * Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's. *
> * @deprecated 1.18.0 * @param mixed[] $yValues Data Series Y > * Use the RSQ() method in the Statistical\Trends class instead * @param mixed[] $xValues Data Series X > * @see Statistical\Trends::RSQ() * > *
< * @return float|string
> * @return float|string The result, or a string containing an error
*/ public static function RSQ($yValues, $xValues) {
< if (!self::checkTrendArrays($yValues, $xValues)) { < return Functions::VALUE(); < } < $yValueCount = count($yValues); < $xValueCount = count($xValues); < < if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { < return Functions::NA(); < } elseif ($yValueCount == 1) { < return Functions::DIV0(); < } < < $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); < < return $bestFitLinear->getGoodnessOfFit();
> return Trends::RSQ($yValues, $xValues);
} /** * SKEW. * * Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry * of a distribution around its mean. Positive skewness indicates a distribution with an * asymmetric tail extending toward more positive values. Negative skewness indicates a * distribution with an asymmetric tail extending toward more negative values. *
> * @deprecated 1.18.0 * @param array ...$args Data Series > * Use the skew() method in the Statistical\Deviations class instead * > * @see Statistical\Deviations::skew() * @return float|string > *
< * @return float|string
> * @return float|string The result, or a string containing an error
public static function SKEW(...$args) {
< $aArgs = Functions::flattenArrayIndexed($args); < $mean = self::AVERAGE($aArgs); < $stdDev = self::STDEV($aArgs); < < $count = $summer = 0; < // Loop through arguments < foreach ($aArgs as $k => $arg) { < if ((is_bool($arg)) && < (!Functions::isMatrixValue($k))) { < } else { < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < $summer += pow((($arg - $mean) / $stdDev), 3); < ++$count; < } < } < } < < if ($count > 2) { < return $summer * ($count / (($count - 1) * ($count - 2))); < } < < return Functions::DIV0();
> return Statistical\Deviations::skew(...$args);
} /** * SLOPE. * * Returns the slope of the linear regression line through data points in known_y's and known_x's. *
> * @deprecated 1.18.0 * @param mixed[] $yValues Data Series Y > * Use the SLOPE() method in the Statistical\Trends class instead * @param mixed[] $xValues Data Series X > * @see Statistical\Trends::SLOPE() * > *
< * @return float|string
> * @return float|string The result, or a string containing an error
*/ public static function SLOPE($yValues, $xValues) {
< if (!self::checkTrendArrays($yValues, $xValues)) { < return Functions::VALUE(); < } < $yValueCount = count($yValues); < $xValueCount = count($xValues); < < if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { < return Functions::NA(); < } elseif ($yValueCount == 1) { < return Functions::DIV0(); < } < < $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); < < return $bestFitLinear->getSlope();
> return Trends::SLOPE($yValues, $xValues);
} /** * SMALL. * * Returns the nth smallest value in a data set. You can use this function to * select a value based on its relative standing. * * Excel Function: * SMALL(value1[,value2[, ...]],entry) *
< * @category Statistical Functions
> * @deprecated 1.18.0 > * Use the small() method in the Statistical\Size class instead > * @see Statistical\Size::small()
* * @param mixed $args Data values
< * @param int $entry Position (ordered from the smallest) in the array or range of data to return
*
< * @return float
> * @return float|string The result, or a string containing an error
*/ public static function SMALL(...$args) {
< $aArgs = Functions::flattenArray($args); < < // Calculate < $entry = array_pop($aArgs); < < if ((is_numeric($entry)) && (!is_string($entry))) { < $mArgs = []; < foreach ($aArgs as $arg) { < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < $mArgs[] = $arg; < } < } < $count = self::COUNT($mArgs); < $entry = floor(--$entry); < if (($entry < 0) || ($entry >= $count) || ($count == 0)) { < return Functions::NAN(); < } < sort($mArgs); < < return $mArgs[$entry]; < } < < return Functions::VALUE();
> return Statistical\Size::small(...$args);
} /** * STANDARDIZE. * * Returns a normalized value from a distribution characterized by mean and standard_dev. *
> * @deprecated 1.18.0 * @param float $value Value to normalize > * Use the execute() method in the Statistical\Standardize class instead * @param float $mean Mean Value > * @see Statistical\Standardize::execute() * @param float $stdDev Standard Deviation > *
*
< * @return float Standardized value
> * @return array|float|string Standardized value, or a string containing an error
*/ public static function STANDARDIZE($value, $mean, $stdDev) {
< $value = Functions::flattenSingleValue($value); < $mean = Functions::flattenSingleValue($mean); < $stdDev = Functions::flattenSingleValue($stdDev); < < if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { < if ($stdDev <= 0) { < return Functions::NAN(); < } < < return ($value - $mean) / $stdDev; < } < < return Functions::VALUE();
> return Statistical\Standardize::execute($value, $mean, $stdDev);
} /** * STDEV. * * Estimates standard deviation based on a sample. The standard deviation is a measure of how * widely values are dispersed from the average value (the mean). * * Excel Function: * STDEV(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the STDEV() method in the Statistical\StandardDeviations class instead > * @see Statistical\StandardDeviations::STDEV()
* * @param mixed ...$args Data values *
< * @return float|string
> * @return float|string The result, or a string containing an error
*/ public static function STDEV(...$args) {
< $aArgs = Functions::flattenArrayIndexed($args); < < // Return value < $returnValue = null; < < $aMean = self::AVERAGE($aArgs); < if ($aMean !== null) { < $aCount = -1; < foreach ($aArgs as $k => $arg) { < if ((is_bool($arg)) && < ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) { < $arg = (int) $arg; < } < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < if ($returnValue === null) { < $returnValue = pow(($arg - $aMean), 2); < } else { < $returnValue += pow(($arg - $aMean), 2); < } < ++$aCount; < } < } < < // Return < if (($aCount > 0) && ($returnValue >= 0)) { < return sqrt($returnValue / $aCount); < } < } < < return Functions::DIV0();
> return StandardDeviations::STDEV(...$args);
} /** * STDEVA. * * Estimates standard deviation based on a sample, including numbers, text, and logical values * * Excel Function: * STDEVA(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the STDEVA() method in the Statistical\StandardDeviations class instead > * @see Statistical\StandardDeviations::STDEVA()
* * @param mixed ...$args Data values * * @return float|string */ public static function STDEVA(...$args) {
< $aArgs = Functions::flattenArrayIndexed($args); < < $returnValue = null; < < $aMean = self::AVERAGEA($aArgs); < if ($aMean !== null) { < $aCount = -1; < foreach ($aArgs as $k => $arg) { < if ((is_bool($arg)) && < (!Functions::isMatrixValue($k))) { < } else { < // Is it a numeric value? < if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { < if (is_bool($arg)) { < $arg = (int) $arg; < } elseif (is_string($arg)) { < $arg = 0; < } < if ($returnValue === null) { < $returnValue = pow(($arg - $aMean), 2); < } else { < $returnValue += pow(($arg - $aMean), 2); < } < ++$aCount; < } < } < } < < if (($aCount > 0) && ($returnValue >= 0)) { < return sqrt($returnValue / $aCount); < } < } < < return Functions::DIV0();
> return StandardDeviations::STDEVA(...$args);
} /** * STDEVP. * * Calculates standard deviation based on the entire population * * Excel Function: * STDEVP(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the STDEVP() method in the Statistical\StandardDeviations class instead > * @see Statistical\StandardDeviations::STDEVP()
* * @param mixed ...$args Data values * * @return float|string */ public static function STDEVP(...$args) {
< $aArgs = Functions::flattenArrayIndexed($args); < < $returnValue = null; < < $aMean = self::AVERAGE($aArgs); < if ($aMean !== null) { < $aCount = 0; < foreach ($aArgs as $k => $arg) { < if ((is_bool($arg)) && < ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) { < $arg = (int) $arg; < } < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < if ($returnValue === null) { < $returnValue = pow(($arg - $aMean), 2); < } else { < $returnValue += pow(($arg - $aMean), 2); < } < ++$aCount; < } < } < < if (($aCount > 0) && ($returnValue >= 0)) { < return sqrt($returnValue / $aCount); < } < } < < return Functions::DIV0();
> return StandardDeviations::STDEVP(...$args);
} /** * STDEVPA. * * Calculates standard deviation based on the entire population, including numbers, text, and logical values * * Excel Function: * STDEVPA(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the STDEVPA() method in the Statistical\StandardDeviations class instead > * @see Statistical\StandardDeviations::STDEVPA()
* * @param mixed ...$args Data values * * @return float|string */ public static function STDEVPA(...$args) {
< $aArgs = Functions::flattenArrayIndexed($args); < < $returnValue = null; < < $aMean = self::AVERAGEA($aArgs); < if ($aMean !== null) { < $aCount = 0; < foreach ($aArgs as $k => $arg) { < if ((is_bool($arg)) && < (!Functions::isMatrixValue($k))) { < } else { < // Is it a numeric value? < if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { < if (is_bool($arg)) { < $arg = (int) $arg; < } elseif (is_string($arg)) { < $arg = 0; < } < if ($returnValue === null) { < $returnValue = pow(($arg - $aMean), 2); < } else { < $returnValue += pow(($arg - $aMean), 2); < } < ++$aCount; < } < } < } < < if (($aCount > 0) && ($returnValue >= 0)) { < return sqrt($returnValue / $aCount); < } < } < < return Functions::DIV0();
> return StandardDeviations::STDEVPA(...$args);
} /** * STEYX. *
> * @deprecated 1.18.0 * Returns the standard error of the predicted y-value for each x in the regression. > * Use the STEYX() method in the Statistical\Trends class instead * > * @see Statistical\Trends::STEYX() * @param mixed[] $yValues Data Series Y > *
* @param mixed[] $xValues Data Series X * * @return float|string */ public static function STEYX($yValues, $xValues) {
< if (!self::checkTrendArrays($yValues, $xValues)) { < return Functions::VALUE(); < } < $yValueCount = count($yValues); < $xValueCount = count($xValues); < < if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { < return Functions::NA(); < } elseif ($yValueCount == 1) { < return Functions::DIV0(); < } < < $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); < < return $bestFitLinear->getStdevOfResiduals();
> return Trends::STEYX($yValues, $xValues);
} /** * TDIST. * * Returns the probability of Student's T distribution. *
> * @deprecated 1.18.0 * @param float $value Value for the function > * Use the distribution() method in the Statistical\Distributions\StudentT class instead * @param float $degrees degrees of freedom > * @see Statistical\Distributions\StudentT::distribution() * @param float $tails number of tails (1 or 2) > *
*
< * @return float
> * @return array|float|string The result, or a string containing an error
*/ public static function TDIST($value, $degrees, $tails) {
< $value = Functions::flattenSingleValue($value); < $degrees = floor(Functions::flattenSingleValue($degrees)); < $tails = floor(Functions::flattenSingleValue($tails)); < < if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) { < if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) { < return Functions::NAN(); < } < // tdist, which finds the probability that corresponds to a given value < // of t with k degrees of freedom. This algorithm is translated from a < // pascal function on p81 of "Statistical Computing in Pascal" by D < // Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd: < // London). The above Pascal algorithm is itself a translation of the < // fortran algoritm "AS 3" by B E Cooper of the Atlas Computer < // Laboratory as reported in (among other places) "Applied Statistics < // Algorithms", editied by P Griffiths and I D Hill (1985; Ellis < // Horwood Ltd.; W. Sussex, England). < $tterm = $degrees; < $ttheta = atan2($value, sqrt($tterm)); < $tc = cos($ttheta); < $ts = sin($ttheta); < $tsum = 0; < < if (($degrees % 2) == 1) { < $ti = 3; < $tterm = $tc; < } else { < $ti = 2; < $tterm = 1; < } < < $tsum = $tterm; < while ($ti < $degrees) { < $tterm *= $tc * $tc * ($ti - 1) / $ti; < $tsum += $tterm; < $ti += 2; < } < $tsum *= $ts; < if (($degrees % 2) == 1) { < $tsum = Functions::M_2DIVPI * ($tsum + $ttheta); < } < $tValue = 0.5 * (1 + $tsum); < if ($tails == 1) { < return 1 - abs($tValue); < } < < return 1 - abs((1 - $tValue) - $tValue); < } < < return Functions::VALUE();
> return Statistical\Distributions\StudentT::distribution($value, $degrees, $tails);
} /** * TINV. *
< * Returns the one-tailed probability of the chi-squared distribution.
> * Returns the one-tailed probability of the Student-T distribution. > * > * @deprecated 1.18.0 > * Use the inverse() method in the Statistical\Distributions\StudentT class instead > * @see Statistical\Distributions\StudentT::inverse()
* * @param float $probability Probability for the function * @param float $degrees degrees of freedom *
< * @return float
> * @return array|float|string The result, or a string containing an error
*/ public static function TINV($probability, $degrees) {
< $probability = Functions::flattenSingleValue($probability); < $degrees = floor(Functions::flattenSingleValue($degrees)); < < if ((is_numeric($probability)) && (is_numeric($degrees))) { < $xLo = 100; < $xHi = 0; < < $x = $xNew = 1; < $dx = 1; < $i = 0; < < while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) { < // Apply Newton-Raphson step < $result = self::TDIST($x, $degrees, 2); < $error = $result - $probability; < if ($error == 0.0) { < $dx = 0; < } elseif ($error < 0.0) { < $xLo = $x; < } else { < $xHi = $x; < } < // Avoid division by zero < if ($result != 0.0) { < $dx = $error / $result; < $xNew = $x - $dx; < } < // If the NR fails to converge (which for example may be the < // case if the initial guess is too rough) we apply a bisection < // step to determine a more narrow interval around the root. < if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) { < $xNew = ($xLo + $xHi) / 2; < $dx = $xNew - $x; < } < $x = $xNew; < } < if ($i == self::MAX_ITERATIONS) { < return Functions::NA(); < } < < return round($x, 12); < } < < return Functions::VALUE();
> return Statistical\Distributions\StudentT::inverse($probability, $degrees);
} /** * TREND. * * Returns values along a linear Trend *
> * @deprecated 1.18.0 * @param mixed[] $yValues Data Series Y > * Use the TREND() method in the Statistical\Trends class instead * @param mixed[] $xValues Data Series X > * @see Statistical\Trends::TREND() * @param mixed[] $newValues Values of X for which we want to find Y > *
* @param bool $const a logical value specifying whether to force the intersect to equal 0 *
< * @return array of float
> * @return float[]
*/ public static function TREND($yValues, $xValues = [], $newValues = [], $const = true) {
< $yValues = Functions::flattenArray($yValues); < $xValues = Functions::flattenArray($xValues); < $newValues = Functions::flattenArray($newValues); < $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const); < < $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const); < if (empty($newValues)) { < $newValues = $bestFitLinear->getXValues(); < } < < $returnArray = []; < foreach ($newValues as $xValue) { < $returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue); < } < < return $returnArray;
> return Trends::TREND($yValues, $xValues, $newValues, $const);
} /** * TRIMMEAN. * * Returns the mean of the interior of a data set. TRIMMEAN calculates the mean * taken by excluding a percentage of data points from the top and bottom tails * of a data set. * * Excel Function: * TRIMEAN(value1[,value2[, ...]], $discard) *
< * @category Statistical Functions
> * @deprecated 1.18.0 > * Use the trim() method in the Statistical\Averages\Mean class instead > * @see Statistical\Averages\Mean::trim()
* * @param mixed $args Data values
< * @param float $discard Percentage to discard
* * @return float|string */ public static function TRIMMEAN(...$args) {
< $aArgs = Functions::flattenArray($args); < < // Calculate < $percent = array_pop($aArgs); < < if ((is_numeric($percent)) && (!is_string($percent))) { < if (($percent < 0) || ($percent > 1)) { < return Functions::NAN(); < } < $mArgs = []; < foreach ($aArgs as $arg) { < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < $mArgs[] = $arg; < } < } < $discard = floor(self::COUNT($mArgs) * $percent / 2); < sort($mArgs); < for ($i = 0; $i < $discard; ++$i) { < array_pop($mArgs); < array_shift($mArgs); < } < < return self::AVERAGE($mArgs); < } < < return Functions::VALUE();
> return Statistical\Averages\Mean::trim(...$args);
} /** * VARFunc. * * Estimates variance based on a sample. * * Excel Function: * VAR(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the VAR() method in the Statistical\Variances class instead > * @see Statistical\Variances::VAR()
* * @param mixed ...$args Data values *
< * @return float
> * @return float|string (string if result is an error)
*/ public static function VARFunc(...$args) {
< $returnValue = Functions::DIV0(); < < $summerA = $summerB = 0; < < // Loop through arguments < $aArgs = Functions::flattenArray($args); < $aCount = 0; < foreach ($aArgs as $arg) { < if (is_bool($arg)) { < $arg = (int) $arg; < } < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < $summerA += ($arg * $arg); < $summerB += $arg; < ++$aCount; < } < } < < if ($aCount > 1) { < $summerA *= $aCount; < $summerB *= $summerB; < $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1)); < } < < return $returnValue;
> return Variances::VAR(...$args);
} /** * VARA. * * Estimates variance based on a sample, including numbers, text, and logical values * * Excel Function: * VARA(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the VARA() method in the Statistical\Variances class instead > * @see Statistical\Variances::VARA()
* * @param mixed ...$args Data values *
< * @return float
> * @return float|string (string if result is an error)
*/ public static function VARA(...$args) {
< $returnValue = Functions::DIV0(); < < $summerA = $summerB = 0; < < // Loop through arguments < $aArgs = Functions::flattenArrayIndexed($args); < $aCount = 0; < foreach ($aArgs as $k => $arg) { < if ((is_string($arg)) && < (Functions::isValue($k))) { < return Functions::VALUE(); < } elseif ((is_string($arg)) && < (!Functions::isMatrixValue($k))) { < } else { < // Is it a numeric value? < if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { < if (is_bool($arg)) { < $arg = (int) $arg; < } elseif (is_string($arg)) { < $arg = 0; < } < $summerA += ($arg * $arg); < $summerB += $arg; < ++$aCount; < } < } < } < < if ($aCount > 1) { < $summerA *= $aCount; < $summerB *= $summerB; < $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1)); < } < < return $returnValue;
> return Variances::VARA(...$args);
} /** * VARP. * * Calculates variance based on the entire population * * Excel Function: * VARP(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the VARP() method in the Statistical\Variances class instead > * @see Statistical\Variances::VARP()
* * @param mixed ...$args Data values *
< * @return float
> * @return float|string (string if result is an error)
*/ public static function VARP(...$args) {
< // Return value < $returnValue = Functions::DIV0(); < < $summerA = $summerB = 0; < < // Loop through arguments < $aArgs = Functions::flattenArray($args); < $aCount = 0; < foreach ($aArgs as $arg) { < if (is_bool($arg)) { < $arg = (int) $arg; < } < // Is it a numeric value? < if ((is_numeric($arg)) && (!is_string($arg))) { < $summerA += ($arg * $arg); < $summerB += $arg; < ++$aCount; < } < } < < if ($aCount > 0) { < $summerA *= $aCount; < $summerB *= $summerB; < $returnValue = ($summerA - $summerB) / ($aCount * $aCount); < } < < return $returnValue;
> return Variances::VARP(...$args);
} /** * VARPA. * * Calculates variance based on the entire population, including numbers, text, and logical values * * Excel Function: * VARPA(value1[,value2[, ...]]) *
< * @category Statistical Functions
> * @deprecated 1.17.0 > * Use the VARPA() method in the Statistical\Variances class instead > * @see Statistical\Variances::VARPA()
* * @param mixed ...$args Data values *
< * @return float
> * @return float|string (string if result is an error)
*/ public static function VARPA(...$args) {
< $returnValue = Functions::DIV0(); < < $summerA = $summerB = 0; < < // Loop through arguments < $aArgs = Functions::flattenArrayIndexed($args); < $aCount = 0; < foreach ($aArgs as $k => $arg) { < if ((is_string($arg)) && < (Functions::isValue($k))) { < return Functions::VALUE(); < } elseif ((is_string($arg)) && < (!Functions::isMatrixValue($k))) { < } else { < // Is it a numeric value? < if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { < if (is_bool($arg)) { < $arg = (int) $arg; < } elseif (is_string($arg)) { < $arg = 0; < } < $summerA += ($arg * $arg); < $summerB += $arg; < ++$aCount; < } < } < } < < if ($aCount > 0) { < $summerA *= $aCount; < $summerB *= $summerB; < $returnValue = ($summerA - $summerB) / ($aCount * $aCount); < } < < return $returnValue;
> return Variances::VARPA(...$args);
} /** * WEIBULL. * * Returns the Weibull distribution. Use this distribution in reliability * analysis, such as calculating a device's mean time to failure. *
> * @deprecated 1.18.0 * @param float $value > * Use the distribution() method in the Statistical\Distributions\Weibull class instead * @param float $alpha Alpha Parameter > * @see Statistical\Distributions\Weibull::distribution() * @param float $beta Beta Parameter > *
* @param bool $cumulative *
< * @return float
> * @return array|float|string (string if result is an error)
*/ public static function WEIBULL($value, $alpha, $beta, $cumulative) {
< $value = Functions::flattenSingleValue($value); < $alpha = Functions::flattenSingleValue($alpha); < $beta = Functions::flattenSingleValue($beta); < < if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) { < if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) { < return Functions::NAN(); < } < if ((is_numeric($cumulative)) || (is_bool($cumulative))) { < if ($cumulative) { < return 1 - exp(0 - pow($value / $beta, $alpha)); < } < < return ($alpha / pow($beta, $alpha)) * pow($value, $alpha - 1) * exp(0 - pow($value / $beta, $alpha)); < } < } < < return Functions::VALUE();
> return Statistical\Distributions\Weibull::distribution($value, $alpha, $beta, $cumulative);
} /** * ZTEST. *
< * Returns the Weibull distribution. Use this distribution in reliability < * analysis, such as calculating a device's mean time to failure.
> * Returns the one-tailed P-value of a z-test.
*
< * @param float $dataSet
> * For a given hypothesized population mean, x, Z.TEST returns the probability that the sample mean would be > * greater than the average of observations in the data set (array) — that is, the observed sample mean. > * > * @deprecated 1.18.0 > * Use the zTest() method in the Statistical\Distributions\StandardNormal class instead > * @see Statistical\Distributions\StandardNormal::zTest() > * > * @param mixed $dataSet
* @param float $m0 Alpha Parameter * @param float $sigma Beta Parameter *
< * @return float|string
> * @return array|float|string (string if result is an error)
*/ public static function ZTEST($dataSet, $m0, $sigma = null) {
< $dataSet = Functions::flattenArrayIndexed($dataSet); < $m0 = Functions::flattenSingleValue($m0); < $sigma = Functions::flattenSingleValue($sigma); < < if ($sigma === null) { < $sigma = self::STDEV($dataSet); < } < $n = count($dataSet); < < return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0) / ($sigma / sqrt($n)));
> return Statistical\Distributions\StandardNormal::zTest($dataSet, $m0, $sigma);
} }