Search moodle.org's
Developer Documentation

See Release Notes
Long Term Support Release

  • Bug fixes for general core bugs in 3.9.x will end* 10 May 2021 (12 months).
  • Bug fixes for security issues in 3.9.x will end* 8 May 2023 (36 months).
  • PHP version: minimum PHP 7.2.0 Note: minimum PHP version has increased since Moodle 3.8. PHP 7.3.x and 7.4.x are supported too.

Differences Between: [Versions 39 and 311] [Versions 39 and 400] [Versions 39 and 401] [Versions 39 and 402] [Versions 39 and 403]

(no description)

File Size: 122 lines (3 kb)
Included or required:0 times
Referenced: 0 times
Includes or requires: 0 files

Defines 1 class

ExponentialBestFit:: (7 methods):
  getValueOfYForX()
  getValueOfXForY()
  getEquation()
  getSlope()
  getIntersect()
  exponentialRegression()
  __construct()


Class: ExponentialBestFit  - X-Ref

getValueOfYForX($xValue)   X-Ref
Return the Y-Value for a specified value of X.

param: float $xValue X-Value
return: float Y-Value

getValueOfXForY($yValue)   X-Ref
Return the X-Value for a specified value of Y.

param: float $yValue Y-Value
return: float X-Value

getEquation($dp = 0)   X-Ref
Return the Equation of the best-fit line.

param: int $dp Number of places of decimal precision to display
return: string

getSlope($dp = 0)   X-Ref
Return the Slope of the line.

param: int $dp Number of places of decimal precision to display
return: float

getIntersect($dp = 0)   X-Ref
Return the Value of X where it intersects Y = 0.

param: int $dp Number of places of decimal precision to display
return: float

exponentialRegression($yValues, $xValues, $const)   X-Ref
Execute the regression and calculate the goodness of fit for a set of X and Y data values.

param: float[] $yValues The set of Y-values for this regression
param: float[] $xValues The set of X-values for this regression
param: bool $const

__construct($yValues, $xValues = [], $const = true)   X-Ref
Define the regression and calculate the goodness of fit for a set of X and Y data values.

param: float[] $yValues The set of Y-values for this regression
param: float[] $xValues The set of X-values for this regression
param: bool $const