Search moodle.org's
Developer Documentation

See Release Notes

  • Bug fixes for general core bugs in 4.0.x will end 8 May 2023 (12 months).
  • Bug fixes for security issues in 4.0.x will end 13 November 2023 (18 months).
  • PHP version: minimum PHP 7.3.0 Note: the minimum PHP version has increased since Moodle 3.10. PHP 7.4.x is also supported.
<?php

declare(strict_types=1);

namespace Phpml\Association;

use Phpml\Helper\Predictable;
use Phpml\Helper\Trainable;

class Apriori implements Associator
{
    use Trainable;
    use Predictable;

    public const ARRAY_KEY_ANTECEDENT = 'antecedent';

    public const ARRAY_KEY_CONFIDENCE = 'confidence';

    public const ARRAY_KEY_CONSEQUENT = 'consequent';

    public const ARRAY_KEY_SUPPORT = 'support';

    /**
     * Minimum relative probability of frequent transactions.
     *
     * @var float
     */
    private $confidence;

    /**
     * The large set contains frequent k-length item sets.
     *
     * @var mixed[][][]
     */
    private $large = [];

    /**
     * Minimum relative frequency of transactions.
     *
     * @var float
     */
    private $support;

    /**
     * The generated Apriori association rules.
     *
     * @var mixed[][]
     */
    private $rules = [];

    /**
     * Apriori constructor.
     */
    public function __construct(float $support = 0.0, float $confidence = 0.0)
    {
        $this->support = $support;
        $this->confidence = $confidence;
    }

    /**
     * Get all association rules which are generated for every k-length frequent item set.
     *
     * @return mixed[][]
     */
    public function getRules(): array
    {
        if (count($this->large) === 0) {
            $this->large = $this->apriori();
        }

        if (count($this->rules) > 0) {
            return $this->rules;
        }

        $this->rules = [];

        $this->generateAllRules();

        return $this->rules;
    }

    /**
     * Generates frequent item sets.
     *
     * @return mixed[][][]
     */
    public function apriori(): array
    {
        $L = [];

        $items = $this->frequent($this->items());
        for ($k = 1; isset($items[0]); ++$k) {
            $L[$k] = $items;
            $items = $this->frequent($this->candidates($items));
        }

        return $L;
    }

    /**
     * @param mixed[] $sample
     *
     * @return mixed[][]
     */
    protected function predictSample(array $sample): array
    {
< $predicts = array_values(array_filter($this->getRules(), function ($rule) use ($sample) {
> $predicts = array_values(array_filter($this->getRules(), function ($rule) use ($sample): bool {
return $this->equals($rule[self::ARRAY_KEY_ANTECEDENT], $sample); }));
< return array_map(function ($rule) {
> return array_map(static function ($rule) {
return $rule[self::ARRAY_KEY_CONSEQUENT]; }, $predicts); } /** * Generate rules for each k-length frequent item set. */ private function generateAllRules(): void { for ($k = 2; isset($this->large[$k]); ++$k) { foreach ($this->large[$k] as $frequent) { $this->generateRules($frequent); } } } /** * Generate confident rules for frequent item set. * * @param mixed[] $frequent */ private function generateRules(array $frequent): void { foreach ($this->antecedents($frequent) as $antecedent) { $confidence = $this->confidence($frequent, $antecedent); if ($this->confidence <= $confidence) { $consequent = array_values(array_diff($frequent, $antecedent)); $this->rules[] = [ self::ARRAY_KEY_ANTECEDENT => $antecedent, self::ARRAY_KEY_CONSEQUENT => $consequent, self::ARRAY_KEY_SUPPORT => $this->support($frequent), self::ARRAY_KEY_CONFIDENCE => $confidence, ]; } } } /** * Generates the power set for given item set $sample. * * @param mixed[] $sample * * @return mixed[][] */ private function powerSet(array $sample): array { $results = [[]]; foreach ($sample as $item) { foreach ($results as $combination) { $results[] = array_merge([$item], $combination); } } return $results; } /** * Generates all proper subsets for given set $sample without the empty set. * * @param mixed[] $sample * * @return mixed[][] */ private function antecedents(array $sample): array { $cardinality = count($sample); $antecedents = $this->powerSet($sample);
< return array_filter($antecedents, function ($antecedent) use ($cardinality) {
> return array_filter($antecedents, static function ($antecedent) use ($cardinality): bool {
return (count($antecedent) != $cardinality) && ($antecedent != []); }); } /** * Calculates frequent k = 1 item sets. * * @return mixed[][] */ private function items(): array { $items = []; foreach ($this->samples as $sample) { foreach ($sample as $item) { if (!in_array($item, $items, true)) { $items[] = $item; } } }
< return array_map(function ($entry) {
> return array_map(static function ($entry): array {
return [$entry]; }, $items); } /** * Returns frequent item sets only. * * @param mixed[][] $samples * * @return mixed[][] */ private function frequent(array $samples): array {
< return array_values(array_filter($samples, function ($entry) {
> return array_values(array_filter($samples, function ($entry): bool {
return $this->support($entry) >= $this->support; })); } /** * Calculates frequent k item sets, where count($samples) == $k - 1. * * @param mixed[][] $samples * * @return mixed[][] */ private function candidates(array $samples): array { $candidates = []; foreach ($samples as $p) { foreach ($samples as $q) { if (count(array_merge(array_diff($p, $q), array_diff($q, $p))) != 2) { continue; } $candidate = array_values(array_unique(array_merge($p, $q))); if ($this->contains($candidates, $candidate)) { continue; } foreach ($this->samples as $sample) { if ($this->subset($sample, $candidate)) { $candidates[] = $candidate; continue 2; } } } } return $candidates; } /** * Calculates confidence for $set. Confidence is the relative amount of sets containing $subset which also contain * $set. * * @param mixed[] $set * @param mixed[] $subset */ private function confidence(array $set, array $subset): float { return $this->support($set) / $this->support($subset); } /** * Calculates support for item set $sample. Support is the relative amount of sets containing $sample in the data * pool. * * @see \Phpml\Association\Apriori::samples * * @param mixed[] $sample */ private function support(array $sample): float { return $this->frequency($sample) / count($this->samples); } /** * Counts occurrences of $sample as subset in data pool. * * @see \Phpml\Association\Apriori::samples * * @param mixed[] $sample */ private function frequency(array $sample): int {
< return count(array_filter($this->samples, function ($entry) use ($sample) {
> return count(array_filter($this->samples, function ($entry) use ($sample): bool {
return $this->subset($entry, $sample); })); } /** * Returns true if set is an element of system. * * @see \Phpml\Association\Apriori::equals() * * @param mixed[][] $system * @param mixed[] $set */ private function contains(array $system, array $set): bool {
< return (bool) array_filter($system, function ($entry) use ($set) {
> return (bool) array_filter($system, function ($entry) use ($set): bool {
return $this->equals($entry, $set); }); } /** * Returns true if subset is a (proper) subset of set by its items string representation. * * @param mixed[] $set * @param mixed[] $subset */ private function subset(array $set, array $subset): bool { return count(array_diff($subset, array_intersect($subset, $set))) === 0; } /** * Returns true if string representation of items does not differ. * * @param mixed[] $set1 * @param mixed[] $set2 */ private function equals(array $set1, array $set2): bool { return array_diff($set1, $set2) == array_diff($set2, $set1); } }