Differences Between: [Versions 310 and 400] [Versions 311 and 400] [Versions 39 and 400]
1 <?php 2 3 declare(strict_types=1); 4 5 namespace Phpml\Classification\Linear; 6 7 use Closure; 8 use Phpml\Classification\Classifier; 9 use Phpml\Exception\InvalidArgumentException; 10 use Phpml\Helper\OneVsRest; 11 use Phpml\Helper\Optimizer\GD; 12 use Phpml\Helper\Optimizer\Optimizer; 13 use Phpml\Helper\Optimizer\StochasticGD; 14 use Phpml\Helper\Predictable; 15 use Phpml\IncrementalEstimator; 16 use Phpml\Preprocessing\Normalizer; 17 18 class Perceptron implements Classifier, IncrementalEstimator 19 { 20 use Predictable; 21 use OneVsRest; 22 23 /** 24 * @var Optimizer|GD|StochasticGD|null 25 */ 26 protected $optimizer; 27 28 /** 29 * @var array 30 */ 31 protected $labels = []; 32 33 /** 34 * @var int 35 */ 36 protected $featureCount = 0; 37 38 /** 39 * @var array 40 */ 41 protected $weights = []; 42 43 /** 44 * @var float 45 */ 46 protected $learningRate; 47 48 /** 49 * @var int 50 */ 51 protected $maxIterations; 52 53 /** 54 * @var Normalizer 55 */ 56 protected $normalizer; 57 58 /** 59 * @var bool 60 */ 61 protected $enableEarlyStop = true; 62 63 /** 64 * Initalize a perceptron classifier with given learning rate and maximum 65 * number of iterations used while training the perceptron 66 * 67 * @param float $learningRate Value between 0.0(exclusive) and 1.0(inclusive) 68 * @param int $maxIterations Must be at least 1 69 * 70 * @throws InvalidArgumentException 71 */ 72 public function __construct(float $learningRate = 0.001, int $maxIterations = 1000, bool $normalizeInputs = true) 73 { 74 if ($learningRate <= 0.0 || $learningRate > 1.0) { 75 throw new InvalidArgumentException('Learning rate should be a float value between 0.0(exclusive) and 1.0(inclusive)'); 76 } 77 78 if ($maxIterations <= 0) { 79 throw new InvalidArgumentException('Maximum number of iterations must be an integer greater than 0'); 80 } 81 82 if ($normalizeInputs) { 83 $this->normalizer = new Normalizer(Normalizer::NORM_STD); 84 } 85 86 $this->learningRate = $learningRate; 87 $this->maxIterations = $maxIterations; 88 } 89 90 public function partialTrain(array $samples, array $targets, array $labels = []): void 91 { 92 $this->trainByLabel($samples, $targets, $labels); 93 } 94 95 public function trainBinary(array $samples, array $targets, array $labels): void 96 { 97 if ($this->normalizer !== null) { 98 $this->normalizer->transform($samples); 99 } 100 101 // Set all target values to either -1 or 1 102 $this->labels = [ 103 1 => $labels[0], 104 -1 => $labels[1], 105 ]; 106 foreach ($targets as $key => $target) { 107 $targets[$key] = (string) $target == (string) $this->labels[1] ? 1 : -1; 108 } 109 110 // Set samples and feature count vars 111 $this->featureCount = count($samples[0]); 112 113 $this->runTraining($samples, $targets); 114 } 115 116 /** 117 * Normally enabling early stopping for the optimization procedure may 118 * help saving processing time while in some cases it may result in 119 * premature convergence.<br> 120 * 121 * If "false" is given, the optimization procedure will always be executed 122 * for $maxIterations times 123 * 124 * @return $this 125 */ 126 public function setEarlyStop(bool $enable = true) 127 { 128 $this->enableEarlyStop = $enable; 129 130 return $this; 131 } 132 133 /** 134 * Returns the cost values obtained during the training. 135 */ 136 public function getCostValues(): array 137 { 138 return $this->costValues; 139 } 140 141 protected function resetBinary(): void 142 { 143 $this->labels = []; 144 $this->optimizer = null; 145 $this->featureCount = 0; 146 $this->weights = []; 147 $this->costValues = []; 148 } 149 150 /** 151 * Trains the perceptron model with Stochastic Gradient Descent optimization 152 * to get the correct set of weights 153 */ 154 protected function runTraining(array $samples, array $targets): void 155 { 156 // The cost function is the sum of squares 157 $callback = function ($weights, $sample, $target): array { 158 $this->weights = $weights; 159 160 $prediction = $this->outputClass($sample); 161 $gradient = $prediction - $target; 162 $error = $gradient ** 2; 163 164 return [$error, $gradient]; 165 }; 166 167 $this->runGradientDescent($samples, $targets, $callback); 168 } 169 170 /** 171 * Executes a Gradient Descent algorithm for 172 * the given cost function 173 */ 174 protected function runGradientDescent(array $samples, array $targets, Closure $gradientFunc, bool $isBatch = false): void 175 { 176 $class = $isBatch ? GD::class : StochasticGD::class; 177 178 if ($this->optimizer === null) { 179 $this->optimizer = (new $class($this->featureCount)) 180 ->setLearningRate($this->learningRate) 181 ->setMaxIterations($this->maxIterations) 182 ->setChangeThreshold(1e-6) 183 ->setEarlyStop($this->enableEarlyStop); 184 } 185 186 $this->weights = $this->optimizer->runOptimization($samples, $targets, $gradientFunc); 187 $this->costValues = $this->optimizer->getCostValues(); 188 } 189 190 /** 191 * Checks if the sample should be normalized and if so, returns the 192 * normalized sample 193 */ 194 protected function checkNormalizedSample(array $sample): array 195 { 196 if ($this->normalizer !== null) { 197 $samples = [$sample]; 198 $this->normalizer->transform($samples); 199 $sample = $samples[0]; 200 } 201 202 return $sample; 203 } 204 205 /** 206 * Calculates net output of the network as a float value for the given input 207 * 208 * @return int|float 209 */ 210 protected function output(array $sample) 211 { 212 $sum = 0; 213 foreach ($this->weights as $index => $w) { 214 if ($index == 0) { 215 $sum += $w; 216 } else { 217 $sum += $w * $sample[$index - 1]; 218 } 219 } 220 221 return $sum; 222 } 223 224 /** 225 * Returns the class value (either -1 or 1) for the given input 226 */ 227 protected function outputClass(array $sample): int 228 { 229 return $this->output($sample) > 0 ? 1 : -1; 230 } 231 232 /** 233 * Returns the probability of the sample of belonging to the given label. 234 * 235 * The probability is simply taken as the distance of the sample 236 * to the decision plane. 237 * 238 * @param mixed $label 239 */ 240 protected function predictProbability(array $sample, $label): float 241 { 242 $predicted = $this->predictSampleBinary($sample); 243 244 if ((string) $predicted == (string) $label) { 245 $sample = $this->checkNormalizedSample($sample); 246 247 return (float) abs($this->output($sample)); 248 } 249 250 return 0.0; 251 } 252 253 /** 254 * @return mixed 255 */ 256 protected function predictSampleBinary(array $sample) 257 { 258 $sample = $this->checkNormalizedSample($sample); 259 260 $predictedClass = $this->outputClass($sample); 261 262 return $this->labels[$predictedClass]; 263 } 264 }
title
Description
Body
title
Description
Body
title
Description
Body
title
Body