Differences Between: [Versions 310 and 400] [Versions 311 and 400] [Versions 39 and 400]
1 <?php 2 3 declare(strict_types=1); 4 5 namespace Phpml\Math; 6 7 use Phpml\Exception\InvalidArgumentException; 8 use Phpml\Exception\MatrixException; 9 use Phpml\Math\LinearAlgebra\LUDecomposition; 10 11 class Matrix 12 { 13 /** 14 * @var array 15 */ 16 private $matrix = []; 17 18 /** 19 * @var int 20 */ 21 private $rows; 22 23 /** 24 * @var int 25 */ 26 private $columns; 27 28 /** 29 * @var float 30 */ 31 private $determinant; 32 33 /** 34 * @throws InvalidArgumentException 35 */ 36 public function __construct(array $matrix, bool $validate = true) 37 { 38 // When a row vector is given 39 if (!is_array($matrix[0])) { 40 $this->rows = 1; 41 $this->columns = count($matrix); 42 $matrix = [$matrix]; 43 } else { 44 $this->rows = count($matrix); 45 $this->columns = count($matrix[0]); 46 } 47 48 if ($validate) { 49 for ($i = 0; $i < $this->rows; ++$i) { 50 if (count($matrix[$i]) !== $this->columns) { 51 throw new InvalidArgumentException('Matrix dimensions did not match'); 52 } 53 } 54 } 55 56 $this->matrix = $matrix; 57 } 58 59 public static function fromFlatArray(array $array): self 60 { 61 $matrix = []; 62 foreach ($array as $value) { 63 $matrix[] = [$value]; 64 } 65 66 return new self($matrix); 67 } 68 69 public function toArray(): array 70 { 71 return $this->matrix; 72 } 73 74 public function toScalar(): float 75 { 76 return $this->matrix[0][0]; 77 } 78 79 public function getRows(): int 80 { 81 return $this->rows; 82 } 83 84 public function getColumns(): int 85 { 86 return $this->columns; 87 } 88 89 /** 90 * @throws MatrixException 91 */ 92 public function getColumnValues(int $column): array 93 { 94 if ($column >= $this->columns) { 95 throw new MatrixException('Column out of range'); 96 } 97 98 return array_column($this->matrix, $column); 99 } 100 101 /** 102 * @return float|int 103 * 104 * @throws MatrixException 105 */ 106 public function getDeterminant() 107 { 108 if ($this->determinant !== null) { 109 return $this->determinant; 110 } 111 112 if (!$this->isSquare()) { 113 throw new MatrixException('Matrix is not square matrix'); 114 } 115 116 $lu = new LUDecomposition($this); 117 118 return $this->determinant = $lu->det(); 119 } 120 121 public function isSquare(): bool 122 { 123 return $this->columns === $this->rows; 124 } 125 126 public function transpose(): self 127 { 128 if ($this->rows === 1) { 129 $matrix = array_map(static function ($el): array { 130 return [$el]; 131 }, $this->matrix[0]); 132 } else { 133 $matrix = array_map(null, ...$this->matrix); 134 } 135 136 return new self($matrix, false); 137 } 138 139 public function multiply(self $matrix): self 140 { 141 if ($this->columns !== $matrix->getRows()) { 142 throw new InvalidArgumentException('Inconsistent matrix supplied'); 143 } 144 145 $array1 = $this->toArray(); 146 $array2 = $matrix->toArray(); 147 $colCount = $matrix->columns; 148 149 /* 150 - To speed-up multiplication, we need to avoid use of array index operator [ ] as much as possible( See #255 for details) 151 - A combination of "foreach" and "array_column" works much faster then accessing the array via index operator 152 */ 153 $product = []; 154 foreach ($array1 as $row => $rowData) { 155 for ($col = 0; $col < $colCount; ++$col) { 156 $columnData = array_column($array2, $col); 157 $sum = 0; 158 foreach ($rowData as $key => $valueData) { 159 $sum += $valueData * $columnData[$key]; 160 } 161 162 $product[$row][$col] = $sum; 163 } 164 } 165 166 return new self($product, false); 167 } 168 169 /** 170 * @param float|int $value 171 */ 172 public function divideByScalar($value): self 173 { 174 $newMatrix = []; 175 for ($i = 0; $i < $this->rows; ++$i) { 176 for ($j = 0; $j < $this->columns; ++$j) { 177 $newMatrix[$i][$j] = $this->matrix[$i][$j] / $value; 178 } 179 } 180 181 return new self($newMatrix, false); 182 } 183 184 /** 185 * @param float|int $value 186 */ 187 public function multiplyByScalar($value): self 188 { 189 $newMatrix = []; 190 for ($i = 0; $i < $this->rows; ++$i) { 191 for ($j = 0; $j < $this->columns; ++$j) { 192 $newMatrix[$i][$j] = $this->matrix[$i][$j] * $value; 193 } 194 } 195 196 return new self($newMatrix, false); 197 } 198 199 /** 200 * Element-wise addition of the matrix with another one 201 */ 202 public function add(self $other): self 203 { 204 return $this->sum($other); 205 } 206 207 /** 208 * Element-wise subtracting of another matrix from this one 209 */ 210 public function subtract(self $other): self 211 { 212 return $this->sum($other, -1); 213 } 214 215 public function inverse(): self 216 { 217 if (!$this->isSquare()) { 218 throw new MatrixException('Matrix is not square matrix'); 219 } 220 221 $LU = new LUDecomposition($this); 222 $identity = $this->getIdentity(); 223 $inverse = $LU->solve($identity); 224 225 return new self($inverse, false); 226 } 227 228 public function crossOut(int $row, int $column): self 229 { 230 $newMatrix = []; 231 $r = 0; 232 for ($i = 0; $i < $this->rows; ++$i) { 233 $c = 0; 234 if ($row != $i) { 235 for ($j = 0; $j < $this->columns; ++$j) { 236 if ($column != $j) { 237 $newMatrix[$r][$c] = $this->matrix[$i][$j]; 238 ++$c; 239 } 240 } 241 242 ++$r; 243 } 244 } 245 246 return new self($newMatrix, false); 247 } 248 249 public function isSingular(): bool 250 { 251 return $this->getDeterminant() == 0; 252 } 253 254 /** 255 * Frobenius norm (Hilbert–Schmidt norm, Euclidean norm) (‖A‖F) 256 * Square root of the sum of the square of all elements. 257 * 258 * https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm 259 * 260 * _____________ 261 * /ᵐ ⁿ 262 * ‖A‖F = √ Σ Σ |aᵢⱼ|² 263 * ᵢ₌₁ ᵢ₌₁ 264 */ 265 public function frobeniusNorm(): float 266 { 267 $squareSum = 0; 268 for ($i = 0; $i < $this->rows; ++$i) { 269 for ($j = 0; $j < $this->columns; ++$j) { 270 $squareSum += $this->matrix[$i][$j] ** 2; 271 } 272 } 273 274 return $squareSum ** .5; 275 } 276 277 /** 278 * Returns the transpose of given array 279 */ 280 public static function transposeArray(array $array): array 281 { 282 return (new self($array, false))->transpose()->toArray(); 283 } 284 285 /** 286 * Returns the dot product of two arrays<br> 287 * Matrix::dot(x, y) ==> x.y' 288 */ 289 public static function dot(array $array1, array $array2): array 290 { 291 $m1 = new self($array1, false); 292 $m2 = new self($array2, false); 293 294 return $m1->multiply($m2->transpose())->toArray()[0]; 295 } 296 297 /** 298 * Element-wise addition or substraction depending on the given sign parameter 299 */ 300 private function sum(self $other, int $sign = 1): self 301 { 302 $a1 = $this->toArray(); 303 $a2 = $other->toArray(); 304 305 $newMatrix = []; 306 for ($i = 0; $i < $this->rows; ++$i) { 307 for ($k = 0; $k < $this->columns; ++$k) { 308 $newMatrix[$i][$k] = $a1[$i][$k] + $sign * $a2[$i][$k]; 309 } 310 } 311 312 return new self($newMatrix, false); 313 } 314 315 /** 316 * Returns diagonal identity matrix of the same size of this matrix 317 */ 318 private function getIdentity(): self 319 { 320 $array = array_fill(0, $this->rows, array_fill(0, $this->columns, 0)); 321 for ($i = 0; $i < $this->rows; ++$i) { 322 $array[$i][$i] = 1; 323 } 324 325 return new self($array, false); 326 } 327 }
title
Description
Body
title
Description
Body
title
Description
Body
title
Body