<?php
declare(strict_types=1);
namespace Phpml\NeuralNetwork\Network;
use Phpml\Estimator;
use Phpml\Exception\InvalidArgumentException;
use Phpml\Helper\Predictable;
use Phpml\IncrementalEstimator;
use Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction\Sigmoid;
use Phpml\NeuralNetwork\Layer;
use Phpml\NeuralNetwork\Node\Bias;
use Phpml\NeuralNetwork\Node\Input;
use Phpml\NeuralNetwork\Node\Neuron;
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
use Phpml\NeuralNetwork\Training\Backpropagation;
abstract class MultilayerPerceptron extends LayeredNetwork implements Estimator, IncrementalEstimator
{
use Predictable;
/**
* @var array
*/
protected $classes = [];
/**
* @var ActivationFunction|null
*/
protected $activationFunction;
/**
* @var Backpropagation
*/
protected $backpropagation;
/**
* @var int
*/
private $inputLayerFeatures;
/**
* @var array
*/
private $hiddenLayers = [];
/**
* @var float
*/
private $learningRate;
/**
* @var int
*/
private $iterations;
/**
* @throws InvalidArgumentException
*/
< public function __construct(int $inputLayerFeatures, array $hiddenLayers, array $classes, int $iterations = 10000, ?ActivationFunction $activationFunction = null, float $learningRate = 1)
< {
> public function __construct(
> int $inputLayerFeatures,
> array $hiddenLayers,
> array $classes,
> int $iterations = 10000,
> ?ActivationFunction $activationFunction = null,
> float $learningRate = 1.
> ) {
if (count($hiddenLayers) === 0) {
throw new InvalidArgumentException('Provide at least 1 hidden layer');
}
if (count($classes) < 2) {
throw new InvalidArgumentException('Provide at least 2 different classes');
}
if (count($classes) !== count(array_unique($classes))) {
throw new InvalidArgumentException('Classes must be unique');
}
$this->classes = array_values($classes);
$this->iterations = $iterations;
$this->inputLayerFeatures = $inputLayerFeatures;
$this->hiddenLayers = $hiddenLayers;
$this->activationFunction = $activationFunction;
$this->learningRate = $learningRate;
$this->initNetwork();
}
public function train(array $samples, array $targets): void
{
$this->reset();
$this->initNetwork();
$this->partialTrain($samples, $targets, $this->classes);
}
/**
* @throws InvalidArgumentException
*/
public function partialTrain(array $samples, array $targets, array $classes = []): void
{
if (count($classes) > 0 && array_values($classes) !== $this->classes) {
// We require the list of classes in the constructor.
throw new InvalidArgumentException(
'The provided classes don\'t match the classes provided in the constructor'
);
}
for ($i = 0; $i < $this->iterations; ++$i) {
$this->trainSamples($samples, $targets);
}
}
public function setLearningRate(float $learningRate): void
{
$this->learningRate = $learningRate;
$this->backpropagation->setLearningRate($this->learningRate);
}
public function getOutput(): array
{
$result = [];
foreach ($this->getOutputLayer()->getNodes() as $i => $neuron) {
$result[$this->classes[$i]] = $neuron->getOutput();
}
return $result;
> }
}
>
> public function getLearningRate(): float
/**
> {
* @param mixed $target
> return $this->learningRate;
*/
> }
abstract protected function trainSample(array $sample, $target): void;
>
> public function getBackpropagation(): Backpropagation
/**
> {
* @return mixed
> return $this->backpropagation;
*/
abstract protected function predictSample(array $sample);
protected function reset(): void
{
$this->removeLayers();
}
private function initNetwork(): void
{
$this->addInputLayer($this->inputLayerFeatures);
$this->addNeuronLayers($this->hiddenLayers, $this->activationFunction);
// Sigmoid function for the output layer as we want a value from 0 to 1.
$sigmoid = new Sigmoid();
$this->addNeuronLayers([count($this->classes)], $sigmoid);
$this->addBiasNodes();
$this->generateSynapses();
$this->backpropagation = new Backpropagation($this->learningRate);
}
private function addInputLayer(int $nodes): void
{
$this->addLayer(new Layer($nodes, Input::class));
}
private function addNeuronLayers(array $layers, ?ActivationFunction $defaultActivationFunction = null): void
{
foreach ($layers as $layer) {
if (is_array($layer)) {
$function = $layer[1] instanceof ActivationFunction ? $layer[1] : $defaultActivationFunction;
$this->addLayer(new Layer($layer[0], Neuron::class, $function));
} elseif ($layer instanceof Layer) {
$this->addLayer($layer);
} else {
$this->addLayer(new Layer($layer, Neuron::class, $defaultActivationFunction));
}
}
}
private function generateSynapses(): void
{
$layersNumber = count($this->layers) - 1;
for ($i = 0; $i < $layersNumber; ++$i) {
$currentLayer = $this->layers[$i];
$nextLayer = $this->layers[$i + 1];
$this->generateLayerSynapses($nextLayer, $currentLayer);
}
}
private function addBiasNodes(): void
{
$biasLayers = count($this->layers) - 1;
for ($i = 0; $i < $biasLayers; ++$i) {
$this->layers[$i]->addNode(new Bias());
}
}
private function generateLayerSynapses(Layer $nextLayer, Layer $currentLayer): void
{
foreach ($nextLayer->getNodes() as $nextNeuron) {
if ($nextNeuron instanceof Neuron) {
$this->generateNeuronSynapses($currentLayer, $nextNeuron);
}
}
}
private function generateNeuronSynapses(Layer $currentLayer, Neuron $nextNeuron): void
{
foreach ($currentLayer->getNodes() as $currentNeuron) {
$nextNeuron->addSynapse(new Synapse($currentNeuron));
}
}
private function trainSamples(array $samples, array $targets): void
{
foreach ($targets as $key => $target) {
$this->trainSample($samples[$key], $target);
}
}
}