Search moodle.org's
Developer Documentation

See Release Notes

  • Bug fixes for general core bugs in 4.0.x will end 8 May 2023 (12 months).
  • Bug fixes for security issues in 4.0.x will end 13 November 2023 (18 months).
  • PHP version: minimum PHP 7.3.0 Note: the minimum PHP version has increased since Moodle 3.10. PHP 7.4.x is also supported.

Differences Between: [Versions 310 and 400] [Versions 311 and 400] [Versions 39 and 400] [Versions 400 and 401] [Versions 400 and 402] [Versions 400 and 403]

   1  <?php
   2  
   3  namespace PhpOffice\PhpSpreadsheet\Calculation;
   4  
   5  use Complex\Complex;
   6  use PhpOffice\PhpSpreadsheet\Calculation\Engineering\ComplexFunctions;
   7  use PhpOffice\PhpSpreadsheet\Calculation\Engineering\ComplexOperations;
   8  
   9  /**
  10   * @deprecated 1.18.0
  11   */
  12  class Engineering
  13  {
  14      /**
  15       * EULER.
  16       *
  17       * @deprecated 1.18.0
  18       * @see Use Engineering\Constants\EULER instead
  19       */
  20      public const EULER = 2.71828182845904523536;
  21  
  22      /**
  23       * parseComplex.
  24       *
  25       * Parses a complex number into its real and imaginary parts, and an I or J suffix
  26       *
  27       * @deprecated 1.12.0 No longer used by internal code. Please use the \Complex\Complex class instead
  28       *
  29       * @param string $complexNumber The complex number
  30       *
  31       * @return mixed[] Indexed on "real", "imaginary" and "suffix"
  32       */
  33      public static function parseComplex($complexNumber)
  34      {
  35          $complex = new Complex($complexNumber);
  36  
  37          return [
  38              'real' => $complex->getReal(),
  39              'imaginary' => $complex->getImaginary(),
  40              'suffix' => $complex->getSuffix(),
  41          ];
  42      }
  43  
  44      /**
  45       * BESSELI.
  46       *
  47       *    Returns the modified Bessel function In(x), which is equivalent to the Bessel function evaluated
  48       *        for purely imaginary arguments
  49       *
  50       *    Excel Function:
  51       *        BESSELI(x,ord)
  52       *
  53       * @Deprecated 1.17.0
  54       *
  55       * @see Use the BESSELI() method in the Engineering\BesselI class instead
  56       *
  57       * @param float $x The value at which to evaluate the function.
  58       *                                If x is nonnumeric, BESSELI returns the #VALUE! error value.
  59       * @param int $ord The order of the Bessel function.
  60       *                                If ord is not an integer, it is truncated.
  61       *                                If $ord is nonnumeric, BESSELI returns the #VALUE! error value.
  62       *                                If $ord < 0, BESSELI returns the #NUM! error value.
  63       *
  64       * @return float|string Result, or a string containing an error
  65       */
  66      public static function BESSELI($x, $ord)
  67      {
  68          return Engineering\BesselI::BESSELI($x, $ord);
  69      }
  70  
  71      /**
  72       * BESSELJ.
  73       *
  74       *    Returns the Bessel function
  75       *
  76       *    Excel Function:
  77       *        BESSELJ(x,ord)
  78       *
  79       * @Deprecated 1.17.0
  80       *
  81       * @see Use the BESSELJ() method in the Engineering\BesselJ class instead
  82       *
  83       * @param float $x The value at which to evaluate the function.
  84       *                                If x is nonnumeric, BESSELJ returns the #VALUE! error value.
  85       * @param int $ord The order of the Bessel function. If n is not an integer, it is truncated.
  86       *                                If $ord is nonnumeric, BESSELJ returns the #VALUE! error value.
  87       *                                If $ord < 0, BESSELJ returns the #NUM! error value.
  88       *
  89       * @return float|string Result, or a string containing an error
  90       */
  91      public static function BESSELJ($x, $ord)
  92      {
  93          return Engineering\BesselJ::BESSELJ($x, $ord);
  94      }
  95  
  96      /**
  97       * BESSELK.
  98       *
  99       *    Returns the modified Bessel function Kn(x), which is equivalent to the Bessel functions evaluated
 100       *        for purely imaginary arguments.
 101       *
 102       *    Excel Function:
 103       *        BESSELK(x,ord)
 104       *
 105       * @Deprecated 1.17.0
 106       *
 107       * @see Use the BESSELK() method in the Engineering\BesselK class instead
 108       *
 109       * @param float $x The value at which to evaluate the function.
 110       *                                If x is nonnumeric, BESSELK returns the #VALUE! error value.
 111       * @param int $ord The order of the Bessel function. If n is not an integer, it is truncated.
 112       *                                If $ord is nonnumeric, BESSELK returns the #VALUE! error value.
 113       *                                If $ord < 0, BESSELK returns the #NUM! error value.
 114       *
 115       * @return float|string Result, or a string containing an error
 116       */
 117      public static function BESSELK($x, $ord)
 118      {
 119          return Engineering\BesselK::BESSELK($x, $ord);
 120      }
 121  
 122      /**
 123       * BESSELY.
 124       *
 125       * Returns the Bessel function, which is also called the Weber function or the Neumann function.
 126       *
 127       *    Excel Function:
 128       *        BESSELY(x,ord)
 129       *
 130       * @Deprecated 1.17.0
 131       *
 132       * @see Use the BESSELY() method in the Engineering\BesselY class instead
 133       *
 134       * @param float $x The value at which to evaluate the function.
 135       *                                If x is nonnumeric, BESSELY returns the #VALUE! error value.
 136       * @param int $ord The order of the Bessel function. If n is not an integer, it is truncated.
 137       *                                If $ord is nonnumeric, BESSELY returns the #VALUE! error value.
 138       *                                If $ord < 0, BESSELY returns the #NUM! error value.
 139       *
 140       * @return float|string Result, or a string containing an error
 141       */
 142      public static function BESSELY($x, $ord)
 143      {
 144          return Engineering\BesselY::BESSELY($x, $ord);
 145      }
 146  
 147      /**
 148       * BINTODEC.
 149       *
 150       * Return a binary value as decimal.
 151       *
 152       * Excel Function:
 153       *        BIN2DEC(x)
 154       *
 155       * @Deprecated 1.17.0
 156       *
 157       * @see Use the toDecimal() method in the Engineering\ConvertBinary class instead
 158       *
 159       * @param mixed $x The binary number (as a string) that you want to convert. The number
 160       *                                cannot contain more than 10 characters (10 bits). The most significant
 161       *                                bit of number is the sign bit. The remaining 9 bits are magnitude bits.
 162       *                                Negative numbers are represented using two's-complement notation.
 163       *                                If number is not a valid binary number, or if number contains more than
 164       *                                10 characters (10 bits), BIN2DEC returns the #NUM! error value.
 165       *
 166       * @return string
 167       */
 168      public static function BINTODEC($x)
 169      {
 170          return Engineering\ConvertBinary::toDecimal($x);
 171      }
 172  
 173      /**
 174       * BINTOHEX.
 175       *
 176       * Return a binary value as hex.
 177       *
 178       * Excel Function:
 179       *        BIN2HEX(x[,places])
 180       *
 181       * @Deprecated 1.17.0
 182       *
 183       * @see Use the toHex() method in the Engineering\ConvertBinary class instead
 184       *
 185       * @param mixed $x The binary number (as a string) that you want to convert. The number
 186       *                                cannot contain more than 10 characters (10 bits). The most significant
 187       *                                bit of number is the sign bit. The remaining 9 bits are magnitude bits.
 188       *                                Negative numbers are represented using two's-complement notation.
 189       *                                If number is not a valid binary number, or if number contains more than
 190       *                                10 characters (10 bits), BIN2HEX returns the #NUM! error value.
 191       * @param mixed $places The number of characters to use. If places is omitted, BIN2HEX uses the
 192       *                                minimum number of characters necessary. Places is useful for padding the
 193       *                                return value with leading 0s (zeros).
 194       *                                If places is not an integer, it is truncated.
 195       *                                If places is nonnumeric, BIN2HEX returns the #VALUE! error value.
 196       *                                If places is negative, BIN2HEX returns the #NUM! error value.
 197       *
 198       * @return string
 199       */
 200      public static function BINTOHEX($x, $places = null)
 201      {
 202          return Engineering\ConvertBinary::toHex($x, $places);
 203      }
 204  
 205      /**
 206       * BINTOOCT.
 207       *
 208       * Return a binary value as octal.
 209       *
 210       * Excel Function:
 211       *        BIN2OCT(x[,places])
 212       *
 213       * @Deprecated 1.17.0
 214       *
 215       * @see Use the toOctal() method in the Engineering\ConvertBinary class instead
 216       *
 217       * @param mixed $x The binary number (as a string) that you want to convert. The number
 218       *                                cannot contain more than 10 characters (10 bits). The most significant
 219       *                                bit of number is the sign bit. The remaining 9 bits are magnitude bits.
 220       *                                Negative numbers are represented using two's-complement notation.
 221       *                                If number is not a valid binary number, or if number contains more than
 222       *                                10 characters (10 bits), BIN2OCT returns the #NUM! error value.
 223       * @param mixed $places The number of characters to use. If places is omitted, BIN2OCT uses the
 224       *                                minimum number of characters necessary. Places is useful for padding the
 225       *                                return value with leading 0s (zeros).
 226       *                                If places is not an integer, it is truncated.
 227       *                                If places is nonnumeric, BIN2OCT returns the #VALUE! error value.
 228       *                                If places is negative, BIN2OCT returns the #NUM! error value.
 229       *
 230       * @return string
 231       */
 232      public static function BINTOOCT($x, $places = null)
 233      {
 234          return Engineering\ConvertBinary::toOctal($x, $places);
 235      }
 236  
 237      /**
 238       * DECTOBIN.
 239       *
 240       * Return a decimal value as binary.
 241       *
 242       * Excel Function:
 243       *        DEC2BIN(x[,places])
 244       *
 245       * @Deprecated 1.17.0
 246       *
 247       * @see Use the toBinary() method in the Engineering\ConvertDecimal class instead
 248       *
 249       * @param mixed $x The decimal integer you want to convert. If number is negative,
 250       *                                valid place values are ignored and DEC2BIN returns a 10-character
 251       *                                (10-bit) binary number in which the most significant bit is the sign
 252       *                                bit. The remaining 9 bits are magnitude bits. Negative numbers are
 253       *                                represented using two's-complement notation.
 254       *                                If number < -512 or if number > 511, DEC2BIN returns the #NUM! error
 255       *                                value.
 256       *                                If number is nonnumeric, DEC2BIN returns the #VALUE! error value.
 257       *                                If DEC2BIN requires more than places characters, it returns the #NUM!
 258       *                                error value.
 259       * @param mixed $places The number of characters to use. If places is omitted, DEC2BIN uses
 260       *                                the minimum number of characters necessary. Places is useful for
 261       *                                padding the return value with leading 0s (zeros).
 262       *                                If places is not an integer, it is truncated.
 263       *                                If places is nonnumeric, DEC2BIN returns the #VALUE! error value.
 264       *                                If places is zero or negative, DEC2BIN returns the #NUM! error value.
 265       *
 266       * @return string
 267       */
 268      public static function DECTOBIN($x, $places = null)
 269      {
 270          return Engineering\ConvertDecimal::toBinary($x, $places);
 271      }
 272  
 273      /**
 274       * DECTOHEX.
 275       *
 276       * Return a decimal value as hex.
 277       *
 278       * Excel Function:
 279       *        DEC2HEX(x[,places])
 280       *
 281       * @Deprecated 1.17.0
 282       *
 283       * @see Use the toHex() method in the Engineering\ConvertDecimal class instead
 284       *
 285       * @param mixed $x The decimal integer you want to convert. If number is negative,
 286       *                                places is ignored and DEC2HEX returns a 10-character (40-bit)
 287       *                                hexadecimal number in which the most significant bit is the sign
 288       *                                bit. The remaining 39 bits are magnitude bits. Negative numbers
 289       *                                are represented using two's-complement notation.
 290       *                                If number < -549,755,813,888 or if number > 549,755,813,887,
 291       *                                DEC2HEX returns the #NUM! error value.
 292       *                                If number is nonnumeric, DEC2HEX returns the #VALUE! error value.
 293       *                                If DEC2HEX requires more than places characters, it returns the
 294       *                                #NUM! error value.
 295       * @param mixed $places The number of characters to use. If places is omitted, DEC2HEX uses
 296       *                                the minimum number of characters necessary. Places is useful for
 297       *                                padding the return value with leading 0s (zeros).
 298       *                                If places is not an integer, it is truncated.
 299       *                                If places is nonnumeric, DEC2HEX returns the #VALUE! error value.
 300       *                                If places is zero or negative, DEC2HEX returns the #NUM! error value.
 301       *
 302       * @return string
 303       */
 304      public static function DECTOHEX($x, $places = null)
 305      {
 306          return Engineering\ConvertDecimal::toHex($x, $places);
 307      }
 308  
 309      /**
 310       * DECTOOCT.
 311       *
 312       * Return an decimal value as octal.
 313       *
 314       * Excel Function:
 315       *        DEC2OCT(x[,places])
 316       *
 317       * @Deprecated 1.17.0
 318       *
 319       * @see Use the toOctal() method in the Engineering\ConvertDecimal class instead
 320       *
 321       * @param mixed $x The decimal integer you want to convert. If number is negative,
 322       *                                places is ignored and DEC2OCT returns a 10-character (30-bit)
 323       *                                octal number in which the most significant bit is the sign bit.
 324       *                                The remaining 29 bits are magnitude bits. Negative numbers are
 325       *                                represented using two's-complement notation.
 326       *                                If number < -536,870,912 or if number > 536,870,911, DEC2OCT
 327       *                                returns the #NUM! error value.
 328       *                                If number is nonnumeric, DEC2OCT returns the #VALUE! error value.
 329       *                                If DEC2OCT requires more than places characters, it returns the
 330       *                                #NUM! error value.
 331       * @param mixed $places The number of characters to use. If places is omitted, DEC2OCT uses
 332       *                                the minimum number of characters necessary. Places is useful for
 333       *                                padding the return value with leading 0s (zeros).
 334       *                                If places is not an integer, it is truncated.
 335       *                                If places is nonnumeric, DEC2OCT returns the #VALUE! error value.
 336       *                                If places is zero or negative, DEC2OCT returns the #NUM! error value.
 337       *
 338       * @return string
 339       */
 340      public static function DECTOOCT($x, $places = null)
 341      {
 342          return Engineering\ConvertDecimal::toOctal($x, $places);
 343      }
 344  
 345      /**
 346       * HEXTOBIN.
 347       *
 348       * Return a hex value as binary.
 349       *
 350       * Excel Function:
 351       *        HEX2BIN(x[,places])
 352       *
 353       * @Deprecated 1.17.0
 354       *
 355       * @see Use the toBinary() method in the Engineering\ConvertHex class instead
 356       *
 357       * @param mixed $x the hexadecimal number (as a string) that you want to convert.
 358       *                  Number cannot contain more than 10 characters.
 359       *                  The most significant bit of number is the sign bit (40th bit from the right).
 360       *                  The remaining 9 bits are magnitude bits.
 361       *                  Negative numbers are represented using two's-complement notation.
 362       *                  If number is negative, HEX2BIN ignores places and returns a 10-character binary number.
 363       *                  If number is negative, it cannot be less than FFFFFFFE00,
 364       *                      and if number is positive, it cannot be greater than 1FF.
 365       *                  If number is not a valid hexadecimal number, HEX2BIN returns the #NUM! error value.
 366       *                  If HEX2BIN requires more than places characters, it returns the #NUM! error value.
 367       * @param mixed $places The number of characters to use. If places is omitted,
 368       *                                    HEX2BIN uses the minimum number of characters necessary. Places
 369       *                                    is useful for padding the return value with leading 0s (zeros).
 370       *                                    If places is not an integer, it is truncated.
 371       *                                    If places is nonnumeric, HEX2BIN returns the #VALUE! error value.
 372       *                                    If places is negative, HEX2BIN returns the #NUM! error value.
 373       *
 374       * @return string
 375       */
 376      public static function HEXTOBIN($x, $places = null)
 377      {
 378          return Engineering\ConvertHex::toBinary($x, $places);
 379      }
 380  
 381      /**
 382       * HEXTODEC.
 383       *
 384       * Return a hex value as decimal.
 385       *
 386       * Excel Function:
 387       *        HEX2DEC(x)
 388       *
 389       * @Deprecated 1.17.0
 390       *
 391       * @see Use the toDecimal() method in the Engineering\ConvertHex class instead
 392       *
 393       * @param mixed $x The hexadecimal number (as a string) that you want to convert. This number cannot
 394       *                                contain more than 10 characters (40 bits). The most significant
 395       *                                bit of number is the sign bit. The remaining 39 bits are magnitude
 396       *                                bits. Negative numbers are represented using two's-complement
 397       *                                notation.
 398       *                                If number is not a valid hexadecimal number, HEX2DEC returns the
 399       *                                #NUM! error value.
 400       *
 401       * @return string
 402       */
 403      public static function HEXTODEC($x)
 404      {
 405          return Engineering\ConvertHex::toDecimal($x);
 406      }
 407  
 408      /**
 409       * HEXTOOCT.
 410       *
 411       * Return a hex value as octal.
 412       *
 413       * Excel Function:
 414       *        HEX2OCT(x[,places])
 415       *
 416       * @Deprecated 1.17.0
 417       *
 418       * @see Use the toOctal() method in the Engineering\ConvertHex class instead
 419       *
 420       * @param mixed $x The hexadecimal number (as a string) that you want to convert. Number cannot
 421       *                                    contain more than 10 characters. The most significant bit of
 422       *                                    number is the sign bit. The remaining 39 bits are magnitude
 423       *                                    bits. Negative numbers are represented using two's-complement
 424       *                                    notation.
 425       *                                    If number is negative, HEX2OCT ignores places and returns a
 426       *                                    10-character octal number.
 427       *                                    If number is negative, it cannot be less than FFE0000000, and
 428       *                                    if number is positive, it cannot be greater than 1FFFFFFF.
 429       *                                    If number is not a valid hexadecimal number, HEX2OCT returns
 430       *                                    the #NUM! error value.
 431       *                                    If HEX2OCT requires more than places characters, it returns
 432       *                                    the #NUM! error value.
 433       * @param mixed $places The number of characters to use. If places is omitted, HEX2OCT
 434       *                                    uses the minimum number of characters necessary. Places is
 435       *                                    useful for padding the return value with leading 0s (zeros).
 436       *                                    If places is not an integer, it is truncated.
 437       *                                    If places is nonnumeric, HEX2OCT returns the #VALUE! error
 438       *                                    value.
 439       *                                    If places is negative, HEX2OCT returns the #NUM! error value.
 440       *
 441       * @return string
 442       */
 443      public static function HEXTOOCT($x, $places = null)
 444      {
 445          return Engineering\ConvertHex::toOctal($x, $places);
 446      }
 447  
 448      /**
 449       * OCTTOBIN.
 450       *
 451       * Return an octal value as binary.
 452       *
 453       * Excel Function:
 454       *        OCT2BIN(x[,places])
 455       *
 456       * @Deprecated 1.17.0
 457       *
 458       * @see Use the toBinary() method in the Engineering\ConvertOctal class instead
 459       *
 460       * @param mixed $x The octal number you want to convert. Number may not
 461       *                                    contain more than 10 characters. The most significant
 462       *                                    bit of number is the sign bit. The remaining 29 bits
 463       *                                    are magnitude bits. Negative numbers are represented
 464       *                                    using two's-complement notation.
 465       *                                    If number is negative, OCT2BIN ignores places and returns
 466       *                                    a 10-character binary number.
 467       *                                    If number is negative, it cannot be less than 7777777000,
 468       *                                    and if number is positive, it cannot be greater than 777.
 469       *                                    If number is not a valid octal number, OCT2BIN returns
 470       *                                    the #NUM! error value.
 471       *                                    If OCT2BIN requires more than places characters, it
 472       *                                    returns the #NUM! error value.
 473       * @param mixed $places The number of characters to use. If places is omitted,
 474       *                                    OCT2BIN uses the minimum number of characters necessary.
 475       *                                    Places is useful for padding the return value with
 476       *                                    leading 0s (zeros).
 477       *                                    If places is not an integer, it is truncated.
 478       *                                    If places is nonnumeric, OCT2BIN returns the #VALUE!
 479       *                                    error value.
 480       *                                    If places is negative, OCT2BIN returns the #NUM! error
 481       *                                    value.
 482       *
 483       * @return string
 484       */
 485      public static function OCTTOBIN($x, $places = null)
 486      {
 487          return Engineering\ConvertOctal::toBinary($x, $places);
 488      }
 489  
 490      /**
 491       * OCTTODEC.
 492       *
 493       * Return an octal value as decimal.
 494       *
 495       * Excel Function:
 496       *        OCT2DEC(x)
 497       *
 498       * @Deprecated 1.17.0
 499       *
 500       * @see Use the toDecimal() method in the Engineering\ConvertOctal class instead
 501       *
 502       * @param mixed $x The octal number you want to convert. Number may not contain
 503       *                                more than 10 octal characters (30 bits). The most significant
 504       *                                bit of number is the sign bit. The remaining 29 bits are
 505       *                                magnitude bits. Negative numbers are represented using
 506       *                                two's-complement notation.
 507       *                                If number is not a valid octal number, OCT2DEC returns the
 508       *                                #NUM! error value.
 509       *
 510       * @return string
 511       */
 512      public static function OCTTODEC($x)
 513      {
 514          return Engineering\ConvertOctal::toDecimal($x);
 515      }
 516  
 517      /**
 518       * OCTTOHEX.
 519       *
 520       * Return an octal value as hex.
 521       *
 522       * Excel Function:
 523       *        OCT2HEX(x[,places])
 524       *
 525       * @Deprecated 1.17.0
 526       *
 527       * @see Use the toHex() method in the Engineering\ConvertOctal class instead
 528       *
 529       * @param mixed $x The octal number you want to convert. Number may not contain
 530       *                                    more than 10 octal characters (30 bits). The most significant
 531       *                                    bit of number is the sign bit. The remaining 29 bits are
 532       *                                    magnitude bits. Negative numbers are represented using
 533       *                                    two's-complement notation.
 534       *                                    If number is negative, OCT2HEX ignores places and returns a
 535       *                                    10-character hexadecimal number.
 536       *                                    If number is not a valid octal number, OCT2HEX returns the
 537       *                                    #NUM! error value.
 538       *                                    If OCT2HEX requires more than places characters, it returns
 539       *                                    the #NUM! error value.
 540       * @param mixed $places The number of characters to use. If places is omitted, OCT2HEX
 541       *                                    uses the minimum number of characters necessary. Places is useful
 542       *                                    for padding the return value with leading 0s (zeros).
 543       *                                    If places is not an integer, it is truncated.
 544       *                                    If places is nonnumeric, OCT2HEX returns the #VALUE! error value.
 545       *                                    If places is negative, OCT2HEX returns the #NUM! error value.
 546       *
 547       * @return string
 548       */
 549      public static function OCTTOHEX($x, $places = null)
 550      {
 551          return Engineering\ConvertOctal::toHex($x, $places);
 552      }
 553  
 554      /**
 555       * COMPLEX.
 556       *
 557       * Converts real and imaginary coefficients into a complex number of the form x +/- yi or x +/- yj.
 558       *
 559       * Excel Function:
 560       *        COMPLEX(realNumber,imaginary[,suffix])
 561       *
 562       * @Deprecated 1.18.0
 563       *
 564       * @see Use the COMPLEX() method in the Engineering\Complex class instead
 565       *
 566       * @param float $realNumber the real coefficient of the complex number
 567       * @param float $imaginary the imaginary coefficient of the complex number
 568       * @param string $suffix The suffix for the imaginary component of the complex number.
 569       *                                        If omitted, the suffix is assumed to be "i".
 570       *
 571       * @return string
 572       */
 573      public static function COMPLEX($realNumber = 0.0, $imaginary = 0.0, $suffix = 'i')
 574      {
 575          return Engineering\Complex::COMPLEX($realNumber, $imaginary, $suffix);
 576      }
 577  
 578      /**
 579       * IMAGINARY.
 580       *
 581       * Returns the imaginary coefficient of a complex number in x + yi or x + yj text format.
 582       *
 583       * Excel Function:
 584       *        IMAGINARY(complexNumber)
 585       *
 586       * @Deprecated 1.18.0
 587       *
 588       * @see Use the IMAGINARY() method in the Engineering\Complex class instead
 589       *
 590       * @param string $complexNumber the complex number for which you want the imaginary
 591       *                                         coefficient
 592       *
 593       * @return float|string
 594       */
 595      public static function IMAGINARY($complexNumber)
 596      {
 597          return Engineering\Complex::IMAGINARY($complexNumber);
 598      }
 599  
 600      /**
 601       * IMREAL.
 602       *
 603       * Returns the real coefficient of a complex number in x + yi or x + yj text format.
 604       *
 605       * Excel Function:
 606       *        IMREAL(complexNumber)
 607       *
 608       * @Deprecated 1.18.0
 609       *
 610       * @see Use the IMREAL() method in the Engineering\Complex class instead
 611       *
 612       * @param string $complexNumber the complex number for which you want the real coefficient
 613       *
 614       * @return float|string
 615       */
 616      public static function IMREAL($complexNumber)
 617      {
 618          return Engineering\Complex::IMREAL($complexNumber);
 619      }
 620  
 621      /**
 622       * IMABS.
 623       *
 624       * Returns the absolute value (modulus) of a complex number in x + yi or x + yj text format.
 625       *
 626       * Excel Function:
 627       *        IMABS(complexNumber)
 628       *
 629       * @Deprecated 1.18.0
 630       *
 631       * @see Use the IMABS() method in the Engineering\ComplexFunctions class instead
 632       *
 633       * @param string $complexNumber the complex number for which you want the absolute value
 634       *
 635       * @return float|string
 636       */
 637      public static function IMABS($complexNumber)
 638      {
 639          return ComplexFunctions::IMABS($complexNumber);
 640      }
 641  
 642      /**
 643       * IMARGUMENT.
 644       *
 645       * Returns the argument theta of a complex number, i.e. the angle in radians from the real
 646       * axis to the representation of the number in polar coordinates.
 647       *
 648       * Excel Function:
 649       *        IMARGUMENT(complexNumber)
 650       *
 651       * @Deprecated 1.18.0
 652       *
 653       * @see Use the IMARGUMENT() method in the Engineering\ComplexFunctions class instead
 654       *
 655       * @param string $complexNumber the complex number for which you want the argument theta
 656       *
 657       * @return float|string
 658       */
 659      public static function IMARGUMENT($complexNumber)
 660      {
 661          return ComplexFunctions::IMARGUMENT($complexNumber);
 662      }
 663  
 664      /**
 665       * IMCONJUGATE.
 666       *
 667       * Returns the complex conjugate of a complex number in x + yi or x + yj text format.
 668       *
 669       * Excel Function:
 670       *        IMCONJUGATE(complexNumber)
 671       *
 672       * @Deprecated 1.18.0
 673       *
 674       * @see Use the IMARGUMENT() method in the Engineering\ComplexFunctions class instead
 675       *
 676       * @param string $complexNumber the complex number for which you want the conjugate
 677       *
 678       * @return string
 679       */
 680      public static function IMCONJUGATE($complexNumber)
 681      {
 682          return ComplexFunctions::IMCONJUGATE($complexNumber);
 683      }
 684  
 685      /**
 686       * IMCOS.
 687       *
 688       * Returns the cosine of a complex number in x + yi or x + yj text format.
 689       *
 690       * Excel Function:
 691       *        IMCOS(complexNumber)
 692       *
 693       * @Deprecated 1.18.0
 694       *
 695       * @see Use the IMCOS() method in the Engineering\ComplexFunctions class instead
 696       *
 697       * @param string $complexNumber the complex number for which you want the cosine
 698       *
 699       * @return float|string
 700       */
 701      public static function IMCOS($complexNumber)
 702      {
 703          return ComplexFunctions::IMCOS($complexNumber);
 704      }
 705  
 706      /**
 707       * IMCOSH.
 708       *
 709       * Returns the hyperbolic cosine of a complex number in x + yi or x + yj text format.
 710       *
 711       * Excel Function:
 712       *        IMCOSH(complexNumber)
 713       *
 714       * @Deprecated 1.18.0
 715       *
 716       * @see Use the IMCOSH() method in the Engineering\ComplexFunctions class instead
 717       *
 718       * @param string $complexNumber the complex number for which you want the hyperbolic cosine
 719       *
 720       * @return float|string
 721       */
 722      public static function IMCOSH($complexNumber)
 723      {
 724          return ComplexFunctions::IMCOSH($complexNumber);
 725      }
 726  
 727      /**
 728       * IMCOT.
 729       *
 730       * Returns the cotangent of a complex number in x + yi or x + yj text format.
 731       *
 732       * Excel Function:
 733       *        IMCOT(complexNumber)
 734       *
 735       * @Deprecated 1.18.0
 736       *
 737       * @see Use the IMCOT() method in the Engineering\ComplexFunctions class instead
 738       *
 739       * @param string $complexNumber the complex number for which you want the cotangent
 740       *
 741       * @return float|string
 742       */
 743      public static function IMCOT($complexNumber)
 744      {
 745          return ComplexFunctions::IMCOT($complexNumber);
 746      }
 747  
 748      /**
 749       * IMCSC.
 750       *
 751       * Returns the cosecant of a complex number in x + yi or x + yj text format.
 752       *
 753       * Excel Function:
 754       *        IMCSC(complexNumber)
 755       *
 756       * @Deprecated 1.18.0
 757       *
 758       * @see Use the IMCSC() method in the Engineering\ComplexFunctions class instead
 759       *
 760       * @param string $complexNumber the complex number for which you want the cosecant
 761       *
 762       * @return float|string
 763       */
 764      public static function IMCSC($complexNumber)
 765      {
 766          return ComplexFunctions::IMCSC($complexNumber);
 767      }
 768  
 769      /**
 770       * IMCSCH.
 771       *
 772       * Returns the hyperbolic cosecant of a complex number in x + yi or x + yj text format.
 773       *
 774       * Excel Function:
 775       *        IMCSCH(complexNumber)
 776       *
 777       * @Deprecated 1.18.0
 778       *
 779       * @see Use the IMCSCH() method in the Engineering\ComplexFunctions class instead
 780       *
 781       * @param string $complexNumber the complex number for which you want the hyperbolic cosecant
 782       *
 783       * @return float|string
 784       */
 785      public static function IMCSCH($complexNumber)
 786      {
 787          return ComplexFunctions::IMCSCH($complexNumber);
 788      }
 789  
 790      /**
 791       * IMSIN.
 792       *
 793       * Returns the sine of a complex number in x + yi or x + yj text format.
 794       *
 795       * Excel Function:
 796       *        IMSIN(complexNumber)
 797       *
 798       * @Deprecated 1.18.0
 799       *
 800       * @see Use the IMSIN() method in the Engineering\ComplexFunctions class instead
 801       *
 802       * @param string $complexNumber the complex number for which you want the sine
 803       *
 804       * @return float|string
 805       */
 806      public static function IMSIN($complexNumber)
 807      {
 808          return ComplexFunctions::IMSIN($complexNumber);
 809      }
 810  
 811      /**
 812       * IMSINH.
 813       *
 814       * Returns the hyperbolic sine of a complex number in x + yi or x + yj text format.
 815       *
 816       * Excel Function:
 817       *        IMSINH(complexNumber)
 818       *
 819       * @Deprecated 1.18.0
 820       *
 821       * @see Use the IMSINH() method in the Engineering\ComplexFunctions class instead
 822       *
 823       * @param string $complexNumber the complex number for which you want the hyperbolic sine
 824       *
 825       * @return float|string
 826       */
 827      public static function IMSINH($complexNumber)
 828      {
 829          return ComplexFunctions::IMSINH($complexNumber);
 830      }
 831  
 832      /**
 833       * IMSEC.
 834       *
 835       * Returns the secant of a complex number in x + yi or x + yj text format.
 836       *
 837       * Excel Function:
 838       *        IMSEC(complexNumber)
 839       *
 840       * @Deprecated 1.18.0
 841       *
 842       * @see Use the IMSEC() method in the Engineering\ComplexFunctions class instead
 843       *
 844       * @param string $complexNumber the complex number for which you want the secant
 845       *
 846       * @return float|string
 847       */
 848      public static function IMSEC($complexNumber)
 849      {
 850          return ComplexFunctions::IMSEC($complexNumber);
 851      }
 852  
 853      /**
 854       * IMSECH.
 855       *
 856       * Returns the hyperbolic secant of a complex number in x + yi or x + yj text format.
 857       *
 858       * Excel Function:
 859       *        IMSECH(complexNumber)
 860       *
 861       * @Deprecated 1.18.0
 862       *
 863       * @see Use the IMSECH() method in the Engineering\ComplexFunctions class instead
 864       *
 865       * @param string $complexNumber the complex number for which you want the hyperbolic secant
 866       *
 867       * @return float|string
 868       */
 869      public static function IMSECH($complexNumber)
 870      {
 871          return ComplexFunctions::IMSECH($complexNumber);
 872      }
 873  
 874      /**
 875       * IMTAN.
 876       *
 877       * Returns the tangent of a complex number in x + yi or x + yj text format.
 878       *
 879       * Excel Function:
 880       *        IMTAN(complexNumber)
 881       *
 882       * @Deprecated 1.18.0
 883       *
 884       * @see Use the IMTAN() method in the Engineering\ComplexFunctions class instead
 885       *
 886       * @param string $complexNumber the complex number for which you want the tangent
 887       *
 888       * @return float|string
 889       */
 890      public static function IMTAN($complexNumber)
 891      {
 892          return ComplexFunctions::IMTAN($complexNumber);
 893      }
 894  
 895      /**
 896       * IMSQRT.
 897       *
 898       * Returns the square root of a complex number in x + yi or x + yj text format.
 899       *
 900       * Excel Function:
 901       *        IMSQRT(complexNumber)
 902       *
 903       * @Deprecated 1.18.0
 904       *
 905       * @see Use the IMSQRT() method in the Engineering\ComplexFunctions class instead
 906       *
 907       * @param string $complexNumber the complex number for which you want the square root
 908       *
 909       * @return string
 910       */
 911      public static function IMSQRT($complexNumber)
 912      {
 913          return ComplexFunctions::IMSQRT($complexNumber);
 914      }
 915  
 916      /**
 917       * IMLN.
 918       *
 919       * Returns the natural logarithm of a complex number in x + yi or x + yj text format.
 920       *
 921       * Excel Function:
 922       *        IMLN(complexNumber)
 923       *
 924       * @Deprecated 1.18.0
 925       *
 926       * @see Use the IMLN() method in the Engineering\ComplexFunctions class instead
 927       *
 928       * @param string $complexNumber the complex number for which you want the natural logarithm
 929       *
 930       * @return string
 931       */
 932      public static function IMLN($complexNumber)
 933      {
 934          return ComplexFunctions::IMLN($complexNumber);
 935      }
 936  
 937      /**
 938       * IMLOG10.
 939       *
 940       * Returns the common logarithm (base 10) of a complex number in x + yi or x + yj text format.
 941       *
 942       * Excel Function:
 943       *        IMLOG10(complexNumber)
 944       *
 945       * @Deprecated 1.18.0
 946       *
 947       * @see Use the IMLOG10() method in the Engineering\ComplexFunctions class instead
 948       *
 949       * @param string $complexNumber the complex number for which you want the common logarithm
 950       *
 951       * @return string
 952       */
 953      public static function IMLOG10($complexNumber)
 954      {
 955          return ComplexFunctions::IMLOG10($complexNumber);
 956      }
 957  
 958      /**
 959       * IMLOG2.
 960       *
 961       * Returns the base-2 logarithm of a complex number in x + yi or x + yj text format.
 962       *
 963       * Excel Function:
 964       *        IMLOG2(complexNumber)
 965       *
 966       * @Deprecated 1.18.0
 967       *
 968       * @see Use the IMLOG2() method in the Engineering\ComplexFunctions class instead
 969       *
 970       * @param string $complexNumber the complex number for which you want the base-2 logarithm
 971       *
 972       * @return string
 973       */
 974      public static function IMLOG2($complexNumber)
 975      {
 976          return ComplexFunctions::IMLOG2($complexNumber);
 977      }
 978  
 979      /**
 980       * IMEXP.
 981       *
 982       * Returns the exponential of a complex number in x + yi or x + yj text format.
 983       *
 984       * Excel Function:
 985       *        IMEXP(complexNumber)
 986       *
 987       * @Deprecated 1.18.0
 988       *
 989       * @see Use the IMEXP() method in the Engineering\ComplexFunctions class instead
 990       *
 991       * @param string $complexNumber the complex number for which you want the exponential
 992       *
 993       * @return string
 994       */
 995      public static function IMEXP($complexNumber)
 996      {
 997          return ComplexFunctions::IMEXP($complexNumber);
 998      }
 999  
1000      /**
1001       * IMPOWER.
1002       *
1003       * Returns a complex number in x + yi or x + yj text format raised to a power.
1004       *
1005       * Excel Function:
1006       *        IMPOWER(complexNumber,realNumber)
1007       *
1008       * @Deprecated 1.18.0
1009       *
1010       * @see Use the IMPOWER() method in the Engineering\ComplexFunctions class instead
1011       *
1012       * @param string $complexNumber the complex number you want to raise to a power
1013       * @param float $realNumber the power to which you want to raise the complex number
1014       *
1015       * @return string
1016       */
1017      public static function IMPOWER($complexNumber, $realNumber)
1018      {
1019          return ComplexFunctions::IMPOWER($complexNumber, $realNumber);
1020      }
1021  
1022      /**
1023       * IMDIV.
1024       *
1025       * Returns the quotient of two complex numbers in x + yi or x + yj text format.
1026       *
1027       * Excel Function:
1028       *        IMDIV(complexDividend,complexDivisor)
1029       *
1030       * @Deprecated 1.18.0
1031       *
1032       * @see Use the IMDIV() method in the Engineering\ComplexOperations class instead
1033       *
1034       * @param string $complexDividend the complex numerator or dividend
1035       * @param string $complexDivisor the complex denominator or divisor
1036       *
1037       * @return string
1038       */
1039      public static function IMDIV($complexDividend, $complexDivisor)
1040      {
1041          return ComplexOperations::IMDIV($complexDividend, $complexDivisor);
1042      }
1043  
1044      /**
1045       * IMSUB.
1046       *
1047       * Returns the difference of two complex numbers in x + yi or x + yj text format.
1048       *
1049       * Excel Function:
1050       *        IMSUB(complexNumber1,complexNumber2)
1051       *
1052       * @Deprecated 1.18.0
1053       *
1054       * @see Use the IMSUB() method in the Engineering\ComplexOperations class instead
1055       *
1056       * @param string $complexNumber1 the complex number from which to subtract complexNumber2
1057       * @param string $complexNumber2 the complex number to subtract from complexNumber1
1058       *
1059       * @return string
1060       */
1061      public static function IMSUB($complexNumber1, $complexNumber2)
1062      {
1063          return ComplexOperations::IMSUB($complexNumber1, $complexNumber2);
1064      }
1065  
1066      /**
1067       * IMSUM.
1068       *
1069       * Returns the sum of two or more complex numbers in x + yi or x + yj text format.
1070       *
1071       * Excel Function:
1072       *        IMSUM(complexNumber[,complexNumber[,...]])
1073       *
1074       * @Deprecated 1.18.0
1075       *
1076       * @see Use the IMSUM() method in the Engineering\ComplexOperations class instead
1077       *
1078       * @param string ...$complexNumbers Series of complex numbers to add
1079       *
1080       * @return string
1081       */
1082      public static function IMSUM(...$complexNumbers)
1083      {
1084          return ComplexOperations::IMSUM(...$complexNumbers);
1085      }
1086  
1087      /**
1088       * IMPRODUCT.
1089       *
1090       * Returns the product of two or more complex numbers in x + yi or x + yj text format.
1091       *
1092       * Excel Function:
1093       *        IMPRODUCT(complexNumber[,complexNumber[,...]])
1094       *
1095       * @Deprecated 1.18.0
1096       *
1097       * @see Use the IMPRODUCT() method in the Engineering\ComplexOperations class instead
1098       *
1099       * @param string ...$complexNumbers Series of complex numbers to multiply
1100       *
1101       * @return string
1102       */
1103      public static function IMPRODUCT(...$complexNumbers)
1104      {
1105          return ComplexOperations::IMPRODUCT(...$complexNumbers);
1106      }
1107  
1108      /**
1109       * DELTA.
1110       *
1111       * Tests whether two values are equal. Returns 1 if number1 = number2; returns 0 otherwise.
1112       * Use this function to filter a set of values. For example, by summing several DELTA
1113       *     functions you calculate the count of equal pairs. This function is also known as the
1114       *     Kronecker Delta function.
1115       *
1116       *    Excel Function:
1117       *        DELTA(a[,b])
1118       *
1119       * @Deprecated 1.17.0
1120       *
1121       * @see Use the DELTA() method in the Engineering\Compare class instead
1122       *
1123       * @param float $a the first number
1124       * @param float $b The second number. If omitted, b is assumed to be zero.
1125       *
1126       * @return int|string (string in the event of an error)
1127       */
1128      public static function DELTA($a, $b = 0)
1129      {
1130          return Engineering\Compare::DELTA($a, $b);
1131      }
1132  
1133      /**
1134       * GESTEP.
1135       *
1136       *    Excel Function:
1137       *        GESTEP(number[,step])
1138       *
1139       *    Returns 1 if number >= step; returns 0 (zero) otherwise
1140       *    Use this function to filter a set of values. For example, by summing several GESTEP
1141       *        functions you calculate the count of values that exceed a threshold.
1142       *
1143       * @Deprecated 1.17.0
1144       *
1145       * @see Use the GESTEP() method in the Engineering\Compare class instead
1146       *
1147       * @param float $number the value to test against step
1148       * @param float $step The threshold value. If you omit a value for step, GESTEP uses zero.
1149       *
1150       * @return int|string (string in the event of an error)
1151       */
1152      public static function GESTEP($number, $step = 0)
1153      {
1154          return Engineering\Compare::GESTEP($number, $step);
1155      }
1156  
1157      /**
1158       * BITAND.
1159       *
1160       * Returns the bitwise AND of two integer values.
1161       *
1162       * Excel Function:
1163       *        BITAND(number1, number2)
1164       *
1165       * @Deprecated 1.17.0
1166       *
1167       * @see Use the BITAND() method in the Engineering\BitWise class instead
1168       *
1169       * @param int $number1
1170       * @param int $number2
1171       *
1172       * @return int|string
1173       */
1174      public static function BITAND($number1, $number2)
1175      {
1176          return Engineering\BitWise::BITAND($number1, $number2);
1177      }
1178  
1179      /**
1180       * BITOR.
1181       *
1182       * Returns the bitwise OR of two integer values.
1183       *
1184       * Excel Function:
1185       *        BITOR(number1, number2)
1186       *
1187       * @Deprecated 1.17.0
1188       *
1189       * @see Use the BITOR() method in the Engineering\BitWise class instead
1190       *
1191       * @param int $number1
1192       * @param int $number2
1193       *
1194       * @return int|string
1195       */
1196      public static function BITOR($number1, $number2)
1197      {
1198          return Engineering\BitWise::BITOR($number1, $number2);
1199      }
1200  
1201      /**
1202       * BITXOR.
1203       *
1204       * Returns the bitwise XOR of two integer values.
1205       *
1206       * Excel Function:
1207       *        BITXOR(number1, number2)
1208       *
1209       * @Deprecated 1.17.0
1210       *
1211       * @see Use the BITXOR() method in the Engineering\BitWise class instead
1212       *
1213       * @param int $number1
1214       * @param int $number2
1215       *
1216       * @return int|string
1217       */
1218      public static function BITXOR($number1, $number2)
1219      {
1220          return Engineering\BitWise::BITXOR($number1, $number2);
1221      }
1222  
1223      /**
1224       * BITLSHIFT.
1225       *
1226       * Returns the number value shifted left by shift_amount bits.
1227       *
1228       * Excel Function:
1229       *        BITLSHIFT(number, shift_amount)
1230       *
1231       * @Deprecated 1.17.0
1232       *
1233       * @see Use the BITLSHIFT() method in the Engineering\BitWise class instead
1234       *
1235       * @param int $number
1236       * @param int $shiftAmount
1237       *
1238       * @return int|string
1239       */
1240      public static function BITLSHIFT($number, $shiftAmount)
1241      {
1242          return Engineering\BitWise::BITLSHIFT($number, $shiftAmount);
1243      }
1244  
1245      /**
1246       * BITRSHIFT.
1247       *
1248       * Returns the number value shifted right by shift_amount bits.
1249       *
1250       * Excel Function:
1251       *        BITRSHIFT(number, shift_amount)
1252       *
1253       * @Deprecated 1.17.0
1254       *
1255       * @see Use the BITRSHIFT() method in the Engineering\BitWise class instead
1256       *
1257       * @param int $number
1258       * @param int $shiftAmount
1259       *
1260       * @return int|string
1261       */
1262      public static function BITRSHIFT($number, $shiftAmount)
1263      {
1264          return Engineering\BitWise::BITRSHIFT($number, $shiftAmount);
1265      }
1266  
1267      /**
1268       * ERF.
1269       *
1270       * Returns the error function integrated between the lower and upper bound arguments.
1271       *
1272       *    Note: In Excel 2007 or earlier, if you input a negative value for the upper or lower bound arguments,
1273       *            the function would return a #NUM! error. However, in Excel 2010, the function algorithm was
1274       *            improved, so that it can now calculate the function for both positive and negative ranges.
1275       *            PhpSpreadsheet follows Excel 2010 behaviour, and accepts negative arguments.
1276       *
1277       *    Excel Function:
1278       *        ERF(lower[,upper])
1279       *
1280       * @Deprecated 1.17.0
1281       *
1282       * @see Use the ERF() method in the Engineering\Erf class instead
1283       *
1284       * @param float $lower lower bound for integrating ERF
1285       * @param float $upper upper bound for integrating ERF.
1286       *                                If omitted, ERF integrates between zero and lower_limit
1287       *
1288       * @return float|string
1289       */
1290      public static function ERF($lower, $upper = null)
1291      {
1292          return Engineering\Erf::ERF($lower, $upper);
1293      }
1294  
1295      /**
1296       * ERFPRECISE.
1297       *
1298       * Returns the error function integrated between the lower and upper bound arguments.
1299       *
1300       *    Excel Function:
1301       *        ERF.PRECISE(limit)
1302       *
1303       * @Deprecated 1.17.0
1304       *
1305       * @see Use the ERFPRECISE() method in the Engineering\Erf class instead
1306       *
1307       * @param float $limit bound for integrating ERF
1308       *
1309       * @return float|string
1310       */
1311      public static function ERFPRECISE($limit)
1312      {
1313          return Engineering\Erf::ERFPRECISE($limit);
1314      }
1315  
1316      /**
1317       * ERFC.
1318       *
1319       *    Returns the complementary ERF function integrated between x and infinity
1320       *
1321       *    Note: In Excel 2007 or earlier, if you input a negative value for the lower bound argument,
1322       *        the function would return a #NUM! error. However, in Excel 2010, the function algorithm was
1323       *        improved, so that it can now calculate the function for both positive and negative x values.
1324       *            PhpSpreadsheet follows Excel 2010 behaviour, and accepts nagative arguments.
1325       *
1326       *    Excel Function:
1327       *        ERFC(x)
1328       *
1329       * @Deprecated 1.17.0
1330       *
1331       * @see Use the ERFC() method in the Engineering\ErfC class instead
1332       *
1333       * @param float $x The lower bound for integrating ERFC
1334       *
1335       * @return float|string
1336       */
1337      public static function ERFC($x)
1338      {
1339          return Engineering\ErfC::ERFC($x);
1340      }
1341  
1342      /**
1343       *    getConversionGroups
1344       * Returns a list of the different conversion groups for UOM conversions.
1345       *
1346       * @Deprecated 1.16.0
1347       *
1348       * @see Use the getConversionCategories() method in the Engineering\ConvertUOM class instead
1349       *
1350       * @return array
1351       */
1352      public static function getConversionGroups()
1353      {
1354          return Engineering\ConvertUOM::getConversionCategories();
1355      }
1356  
1357      /**
1358       *    getConversionGroupUnits
1359       * Returns an array of units of measure, for a specified conversion group, or for all groups.
1360       *
1361       * @Deprecated 1.16.0
1362       *
1363       * @see Use the getConversionCategoryUnits() method in the ConvertUOM class instead
1364       *
1365       * @param null|mixed $category
1366       *
1367       * @return array
1368       */
1369      public static function getConversionGroupUnits($category = null)
1370      {
1371          return Engineering\ConvertUOM::getConversionCategoryUnits($category);
1372      }
1373  
1374      /**
1375       * getConversionGroupUnitDetails.
1376       *
1377       * @Deprecated 1.16.0
1378       *
1379       * @see Use the getConversionCategoryUnitDetails() method in the ConvertUOM class instead
1380       *
1381       * @param null|mixed $category
1382       *
1383       * @return array
1384       */
1385      public static function getConversionGroupUnitDetails($category = null)
1386      {
1387          return Engineering\ConvertUOM::getConversionCategoryUnitDetails($category);
1388      }
1389  
1390      /**
1391       *    getConversionMultipliers
1392       * Returns an array of the Multiplier prefixes that can be used with Units of Measure in CONVERTUOM().
1393       *
1394       * @Deprecated 1.16.0
1395       *
1396       * @see Use the getConversionMultipliers() method in the ConvertUOM class instead
1397       *
1398       * @return mixed[]
1399       */
1400      public static function getConversionMultipliers()
1401      {
1402          return Engineering\ConvertUOM::getConversionMultipliers();
1403      }
1404  
1405      /**
1406       *    getBinaryConversionMultipliers.
1407       *
1408       * Returns an array of the additional Multiplier prefixes that can be used with Information Units of Measure
1409       *     in CONVERTUOM().
1410       *
1411       * @Deprecated 1.16.0
1412       *
1413       * @see Use the getBinaryConversionMultipliers() method in the ConvertUOM class instead
1414       *
1415       * @return mixed[]
1416       */
1417      public static function getBinaryConversionMultipliers()
1418      {
1419          return Engineering\ConvertUOM::getBinaryConversionMultipliers();
1420      }
1421  
1422      /**
1423       * CONVERTUOM.
1424       *
1425       * Converts a number from one measurement system to another.
1426       *    For example, CONVERT can translate a table of distances in miles to a table of distances
1427       * in kilometers.
1428       *
1429       *    Excel Function:
1430       *        CONVERT(value,fromUOM,toUOM)
1431       *
1432       * @Deprecated 1.16.0
1433       *
1434       * @see Use the CONVERT() method in the ConvertUOM class instead
1435       *
1436       * @param float|int $value the value in fromUOM to convert
1437       * @param string $fromUOM the units for value
1438       * @param string $toUOM the units for the result
1439       *
1440       * @return float|string
1441       */
1442      public static function CONVERTUOM($value, $fromUOM, $toUOM)
1443      {
1444          return Engineering\ConvertUOM::CONVERT($value, $fromUOM, $toUOM);
1445      }
1446  }