See Release Notes
Long Term Support Release
Differences Between: [Versions 310 and 401] [Versions 311 and 401] [Versions 39 and 401]
1 <?php 2 3 declare(strict_types=1); 4 5 namespace Phpml\FeatureSelection\ScoringFunction; 6 7 use Phpml\FeatureSelection\ScoringFunction; 8 use Phpml\Math\Matrix; 9 use Phpml\Math\Statistic\Mean; 10 11 /** 12 * Quick linear model for testing the effect of a single regressor, 13 * sequentially for many regressors. 14 * 15 * This is done in 2 steps: 16 * 17 * 1. The cross correlation between each regressor and the target is computed, 18 * that is, ((X[:, i] - mean(X[:, i])) * (y - mean_y)) / (std(X[:, i]) *std(y)). 19 * 2. It is converted to an F score. 20 * 21 * Ported from scikit-learn f_regression function (http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression) 22 */ 23 final class UnivariateLinearRegression implements ScoringFunction 24 { 25 /** 26 * @var bool 27 */ 28 private $center; 29 30 /** 31 * @param bool $center - if true samples and targets will be centered 32 */ 33 public function __construct(bool $center = true) 34 { 35 $this->center = $center; 36 } 37 38 public function score(array $samples, array $targets): array 39 { 40 if ($this->center) { 41 $this->centerTargets($targets); 42 $this->centerSamples($samples); 43 } 44 45 $correlations = []; 46 foreach (array_keys($samples[0]) as $index) { 47 $featureColumn = array_column($samples, $index); 48 $correlations[$index] = 49 Matrix::dot($targets, $featureColumn)[0] / (new Matrix($featureColumn, false))->transpose()->frobeniusNorm() 50 / (new Matrix($targets, false))->frobeniusNorm(); 51 } 52 53 $degreesOfFreedom = count($targets) - ($this->center ? 2 : 1); 54 55 return array_map(function (float $correlation) use ($degreesOfFreedom): float { 56 return $correlation ** 2 / (1 - $correlation ** 2) * $degreesOfFreedom; 57 }, $correlations); 58 } 59 60 private function centerTargets(array &$targets): void 61 { 62 $mean = Mean::arithmetic($targets); 63 array_walk($targets, function (&$target) use ($mean): void { 64 $target -= $mean; 65 }); 66 } 67 68 private function centerSamples(array &$samples): void 69 { 70 $means = []; 71 foreach ($samples[0] as $index => $feature) { 72 $means[$index] = Mean::arithmetic(array_column($samples, $index)); 73 } 74 75 foreach ($samples as &$sample) { 76 foreach ($sample as $index => &$feature) { 77 $feature -= $means[$index]; 78 } 79 } 80 } 81 }
title
Description
Body
title
Description
Body
title
Description
Body
title
Body