See Release Notes
Long Term Support Release
Differences Between: [Versions 310 and 401] [Versions 311 and 401] [Versions 39 and 401]
1 <?php 2 3 namespace PhpOffice\PhpSpreadsheet\Shared\Trend; 4 5 class ExponentialBestFit extends BestFit 6 { 7 /** 8 * Algorithm type to use for best-fit 9 * (Name of this Trend class). 10 * 11 * @var string 12 */ 13 protected $bestFitType = 'exponential'; 14 15 /** 16 * Return the Y-Value for a specified value of X. 17 * 18 * @param float $xValue X-Value 19 * 20 * @return float Y-Value 21 */ 22 public function getValueOfYForX($xValue) 23 { 24 return $this->getIntersect() * $this->getSlope() ** ($xValue - $this->xOffset); 25 } 26 27 /** 28 * Return the X-Value for a specified value of Y. 29 * 30 * @param float $yValue Y-Value 31 * 32 * @return float X-Value 33 */ 34 public function getValueOfXForY($yValue) 35 { 36 return log(($yValue + $this->yOffset) / $this->getIntersect()) / log($this->getSlope()); 37 } 38 39 /** 40 * Return the Equation of the best-fit line. 41 * 42 * @param int $dp Number of places of decimal precision to display 43 * 44 * @return string 45 */ 46 public function getEquation($dp = 0) 47 { 48 $slope = $this->getSlope($dp); 49 $intersect = $this->getIntersect($dp); 50 51 return 'Y = ' . $intersect . ' * ' . $slope . '^X'; 52 } 53 54 /** 55 * Return the Slope of the line. 56 * 57 * @param int $dp Number of places of decimal precision to display 58 * 59 * @return float 60 */ 61 public function getSlope($dp = 0) 62 { 63 if ($dp != 0) { 64 return round(exp($this->slope), $dp); 65 } 66 67 return exp($this->slope); 68 } 69 70 /** 71 * Return the Value of X where it intersects Y = 0. 72 * 73 * @param int $dp Number of places of decimal precision to display 74 * 75 * @return float 76 */ 77 public function getIntersect($dp = 0) 78 { 79 if ($dp != 0) { 80 return round(exp($this->intersect), $dp); 81 } 82 83 return exp($this->intersect); 84 } 85 86 /** 87 * Execute the regression and calculate the goodness of fit for a set of X and Y data values. 88 * 89 * @param float[] $yValues The set of Y-values for this regression 90 * @param float[] $xValues The set of X-values for this regression 91 */ 92 private function exponentialRegression(array $yValues, array $xValues, bool $const): void 93 { 94 $adjustedYValues = array_map( 95 function ($value) { 96 return ($value < 0.0) ? 0 - log(abs($value)) : log($value); 97 }, 98 $yValues 99 ); 100 101 $this->leastSquareFit($adjustedYValues, $xValues, $const); 102 } 103 104 /** 105 * Define the regression and calculate the goodness of fit for a set of X and Y data values. 106 * 107 * @param float[] $yValues The set of Y-values for this regression 108 * @param float[] $xValues The set of X-values for this regression 109 * @param bool $const 110 */ 111 public function __construct($yValues, $xValues = [], $const = true) 112 { 113 parent::__construct($yValues, $xValues); 114 115 if (!$this->error) { 116 $this->exponentialRegression($yValues, $xValues, (bool) $const); 117 } 118 } 119 }
title
Description
Body
title
Description
Body
title
Description
Body
title
Body