<?php
declare(strict_types=1);
namespace Phpml\Classification\Ensemble;
use Phpml\Classification\Classifier;
use Phpml\Classification\DecisionTree;
use Phpml\Exception\InvalidArgumentException;
use Phpml\Helper\Predictable;
use Phpml\Helper\Trainable;
use ReflectionClass;
class Bagging implements Classifier
{
use Trainable;
use Predictable;
/**
* @var int
*/
protected $numSamples;
/**
* @var int
*/
protected $featureCount = 0;
/**
* @var int
*/
protected $numClassifier;
/**
* @var string
*/
protected $classifier = DecisionTree::class;
/**
* @var array
*/
< protected $classifierOptions = ['depth' => 20];
> protected $classifierOptions = ['maxDepth' => 20];
/**
* @var array
*/
protected $classifiers = [];
/**
* @var float
*/
protected $subsetRatio = 0.7;
/**
* Creates an ensemble classifier with given number of base classifiers
* Default number of base classifiers is 50.
* The more number of base classifiers, the better performance but at the cost of procesing time
*/
public function __construct(int $numClassifier = 50)
{
$this->numClassifier = $numClassifier;
}
/**
* This method determines the ratio of samples used to create the 'bootstrap' subset,
* e.g., random samples drawn from the original dataset with replacement (allow repeats),
* to train each base classifier.
*
* @return $this
*
* @throws InvalidArgumentException
*/
public function setSubsetRatio(float $ratio)
{
if ($ratio < 0.1 || $ratio > 1.0) {
throw new InvalidArgumentException('Subset ratio should be between 0.1 and 1.0');
}
$this->subsetRatio = $ratio;
return $this;
}
/**
* This method is used to set the base classifier. Default value is
* DecisionTree::class, but any class that implements the <i>Classifier</i>
* can be used. <br>
* While giving the parameters of the classifier, the values should be
* given in the order they are in the constructor of the classifier and parameter
* names are neglected.
*
* @return $this
*/
public function setClassifer(string $classifier, array $classifierOptions = [])
{
$this->classifier = $classifier;
$this->classifierOptions = $classifierOptions;
return $this;
}
public function train(array $samples, array $targets): void
{
$this->samples = array_merge($this->samples, $samples);
$this->targets = array_merge($this->targets, $targets);
$this->featureCount = count($samples[0]);
$this->numSamples = count($this->samples);
// Init classifiers and train them with bootstrap samples
$this->classifiers = $this->initClassifiers();
$index = 0;
foreach ($this->classifiers as $classifier) {
[$samples, $targets] = $this->getRandomSubset($index);
$classifier->train($samples, $targets);
++$index;
}
}
protected function getRandomSubset(int $index): array
{
$samples = [];
$targets = [];
srand($index);
$bootstrapSize = $this->subsetRatio * $this->numSamples;
for ($i = 0; $i < $bootstrapSize; ++$i) {
$rand = random_int(0, $this->numSamples - 1);
$samples[] = $this->samples[$rand];
$targets[] = $this->targets[$rand];
}
return [$samples, $targets];
}
protected function initClassifiers(): array
{
$classifiers = [];
for ($i = 0; $i < $this->numClassifier; ++$i) {
$ref = new ReflectionClass($this->classifier);
/** @var Classifier $obj */
$obj = count($this->classifierOptions) === 0 ? $ref->newInstance() : $ref->newInstanceArgs($this->classifierOptions);
$classifiers[] = $this->initSingleClassifier($obj);
}
return $classifiers;
}
protected function initSingleClassifier(Classifier $classifier): Classifier
{
return $classifier;
}
/**
* @return mixed
*/
protected function predictSample(array $sample)
{
$predictions = [];
foreach ($this->classifiers as $classifier) {
/** @var Classifier $classifier */
$predictions[] = $classifier->predict($sample);
}
$counts = array_count_values($predictions);
arsort($counts);
reset($counts);
return key($counts);
}
}