<?php
declare(strict_types=1);
namespace Phpml\Classification\Linear;
use Phpml\Classification\DecisionTree;
use Phpml\Classification\WeightedClassifier;
use Phpml\Exception\InvalidArgumentException;
use Phpml\Helper\OneVsRest;
use Phpml\Helper\Predictable;
use Phpml\Math\Comparison;
class DecisionStump extends WeightedClassifier
{
use Predictable;
use OneVsRest;
public const AUTO_SELECT = -1;
/**
* @var int
*/
protected $givenColumnIndex;
/**
* @var array
*/
protected $binaryLabels = [];
/**
* Lowest error rate obtained while training/optimizing the model
*
* @var float
*/
protected $trainingErrorRate;
/**
* @var int
*/
protected $column;
/**
* @var mixed
*/
protected $value;
/**
* @var string
*/
protected $operator;
/**
* @var array
*/
protected $columnTypes = [];
/**
* @var int
*/
protected $featureCount;
/**
* @var float
*/
protected $numSplitCount = 100.0;
/**
* Distribution of samples in the leaves
*
* @var array
*/
protected $prob = [];
/**
* A DecisionStump classifier is a one-level deep DecisionTree. It is generally
* used with ensemble algorithms as in the weak classifier role. <br>
*
* If columnIndex is given, then the stump tries to produce a decision node
* on this column, otherwise in cases given the value of -1, the stump itself
* decides which column to take for the decision (Default DecisionTree behaviour)
*/
public function __construct(int $columnIndex = self::AUTO_SELECT)
{
$this->givenColumnIndex = $columnIndex;
}
public function __toString(): string
{
< return "IF ${this}->column ${this}->operator ${this}->value ".
> return "IF {$this->column} {$this->operator} {$this->value} ".
'THEN '.$this->binaryLabels[0].' '.
'ELSE '.$this->binaryLabels[1];
}
/**
* While finding best split point for a numerical valued column,
* DecisionStump looks for equally distanced values between minimum and maximum
* values in the column. Given <i>$count</i> value determines how many split
* points to be probed. The more split counts, the better performance but
* worse processing time (Default value is 10.0)
*/
public function setNumericalSplitCount(float $count): void
{
$this->numSplitCount = $count;
}
/**
* @throws InvalidArgumentException
*/
protected function trainBinary(array $samples, array $targets, array $labels): void
{
$this->binaryLabels = $labels;
$this->featureCount = count($samples[0]);
// If a column index is given, it should be among the existing columns
if ($this->givenColumnIndex > count($samples[0]) - 1) {
$this->givenColumnIndex = self::AUTO_SELECT;
}
// Check the size of the weights given.
// If none given, then assign 1 as a weight to each sample
if (count($this->weights) === 0) {
$this->weights = array_fill(0, count($samples), 1);
} else {
$numWeights = count($this->weights);
if ($numWeights !== count($samples)) {
throw new InvalidArgumentException('Number of sample weights does not match with number of samples');
}
}
// Determine type of each column as either "continuous" or "nominal"
$this->columnTypes = DecisionTree::getColumnTypes($samples);
// Try to find the best split in the columns of the dataset
// by calculating error rate for each split point in each column
$columns = range(0, count($samples[0]) - 1);
if ($this->givenColumnIndex !== self::AUTO_SELECT) {
$columns = [$this->givenColumnIndex];
}
$bestSplit = [
'value' => 0,
'operator' => '',
'prob' => [],
'column' => 0,
'trainingErrorRate' => 1.0,
];
foreach ($columns as $col) {
if ($this->columnTypes[$col] == DecisionTree::CONTINUOUS) {
$split = $this->getBestNumericalSplit($samples, $targets, $col);
} else {
$split = $this->getBestNominalSplit($samples, $targets, $col);
}
if ($split['trainingErrorRate'] < $bestSplit['trainingErrorRate']) {
$bestSplit = $split;
}
}
// Assign determined best values to the stump
foreach ($bestSplit as $name => $value) {
$this->{$name} = $value;
}
}
/**
* Determines best split point for the given column
*/
protected function getBestNumericalSplit(array $samples, array $targets, int $col): array
{
$values = array_column($samples, $col);
// Trying all possible points may be accomplished in two general ways:
// 1- Try all values in the $samples array ($values)
// 2- Artificially split the range of values into several parts and try them
// We choose the second one because it is faster in larger datasets
$minValue = min($values);
$maxValue = max($values);
$stepSize = ($maxValue - $minValue) / $this->numSplitCount;
$split = [];
foreach (['<=', '>'] as $operator) {
// Before trying all possible split points, let's first try
// the average value for the cut point
$threshold = array_sum($values) / (float) count($values);
[$errorRate, $prob] = $this->calculateErrorRate($targets, $threshold, $operator, $values);
if (!isset($split['trainingErrorRate']) || $errorRate < $split['trainingErrorRate']) {
$split = [
'value' => $threshold,
'operator' => $operator,
'prob' => $prob,
'column' => $col,
'trainingErrorRate' => $errorRate,
];
}
// Try other possible points one by one
for ($step = $minValue; $step <= $maxValue; $step += $stepSize) {
$threshold = (float) $step;
[$errorRate, $prob] = $this->calculateErrorRate($targets, $threshold, $operator, $values);
if ($errorRate < $split['trainingErrorRate']) {
$split = [
'value' => $threshold,
'operator' => $operator,
'prob' => $prob,
'column' => $col,
'trainingErrorRate' => $errorRate,
];
}
}// for
}
return $split;
}
protected function getBestNominalSplit(array $samples, array $targets, int $col): array
{
$values = array_column($samples, $col);
$valueCounts = array_count_values($values);
$distinctVals = array_keys($valueCounts);
$split = [];
foreach (['=', '!='] as $operator) {
foreach ($distinctVals as $val) {
[$errorRate, $prob] = $this->calculateErrorRate($targets, $val, $operator, $values);
if (!isset($split['trainingErrorRate']) || $split['trainingErrorRate'] < $errorRate) {
$split = [
'value' => $val,
'operator' => $operator,
'prob' => $prob,
'column' => $col,
'trainingErrorRate' => $errorRate,
];
}
}
}
return $split;
}
/**
* Calculates the ratio of wrong predictions based on the new threshold
* value given as the parameter
*/
protected function calculateErrorRate(array $targets, float $threshold, string $operator, array $values): array
{
$wrong = 0.0;
$prob = [];
$leftLabel = $this->binaryLabels[0];
$rightLabel = $this->binaryLabels[1];
foreach ($values as $index => $value) {
if (Comparison::compare($value, $threshold, $operator)) {
$predicted = $leftLabel;
} else {
$predicted = $rightLabel;
}
$target = $targets[$index];
if ((string) $predicted != (string) $targets[$index]) {
$wrong += $this->weights[$index];
}
if (!isset($prob[$predicted][$target])) {
$prob[$predicted][$target] = 0;
}
++$prob[$predicted][$target];
}
// Calculate probabilities: Proportion of labels in each leaf
$dist = array_combine($this->binaryLabels, array_fill(0, 2, 0.0));
foreach ($prob as $leaf => $counts) {
$leafTotal = (float) array_sum($prob[$leaf]);
foreach ($counts as $label => $count) {
if ((string) $leaf == (string) $label) {
$dist[$leaf] = $count / $leafTotal;
}
}
}
return [$wrong / (float) array_sum($this->weights), $dist];
}
/**
* Returns the probability of the sample of belonging to the given label
*
* Probability of a sample is calculated as the proportion of the label
* within the labels of the training samples in the decision node
*
* @param mixed $label
*/
protected function predictProbability(array $sample, $label): float
{
$predicted = $this->predictSampleBinary($sample);
if ((string) $predicted == (string) $label) {
return $this->prob[$label];
}
return 0.0;
}
/**
* @return mixed
*/
protected function predictSampleBinary(array $sample)
{
if (Comparison::compare($sample[$this->column], $this->value, $this->operator)) {
return $this->binaryLabels[0];
}
return $this->binaryLabels[1];
}
protected function resetBinary(): void
{
}
}