Differences Between: [Versions 310 and 402] [Versions 311 and 402] [Versions 39 and 402]
1 <?php 2 3 declare(strict_types=1); 4 5 namespace Phpml\NeuralNetwork\Network; 6 7 use Phpml\Estimator; 8 use Phpml\Exception\InvalidArgumentException; 9 use Phpml\Helper\Predictable; 10 use Phpml\IncrementalEstimator; 11 use Phpml\NeuralNetwork\ActivationFunction; 12 use Phpml\NeuralNetwork\ActivationFunction\Sigmoid; 13 use Phpml\NeuralNetwork\Layer; 14 use Phpml\NeuralNetwork\Node\Bias; 15 use Phpml\NeuralNetwork\Node\Input; 16 use Phpml\NeuralNetwork\Node\Neuron; 17 use Phpml\NeuralNetwork\Node\Neuron\Synapse; 18 use Phpml\NeuralNetwork\Training\Backpropagation; 19 20 abstract class MultilayerPerceptron extends LayeredNetwork implements Estimator, IncrementalEstimator 21 { 22 use Predictable; 23 24 /** 25 * @var array 26 */ 27 protected $classes = []; 28 29 /** 30 * @var ActivationFunction|null 31 */ 32 protected $activationFunction; 33 34 /** 35 * @var Backpropagation 36 */ 37 protected $backpropagation; 38 39 /** 40 * @var int 41 */ 42 private $inputLayerFeatures; 43 44 /** 45 * @var array 46 */ 47 private $hiddenLayers = []; 48 49 /** 50 * @var float 51 */ 52 private $learningRate; 53 54 /** 55 * @var int 56 */ 57 private $iterations; 58 59 /** 60 * @throws InvalidArgumentException 61 */ 62 public function __construct( 63 int $inputLayerFeatures, 64 array $hiddenLayers, 65 array $classes, 66 int $iterations = 10000, 67 ?ActivationFunction $activationFunction = null, 68 float $learningRate = 1. 69 ) { 70 if (count($hiddenLayers) === 0) { 71 throw new InvalidArgumentException('Provide at least 1 hidden layer'); 72 } 73 74 if (count($classes) < 2) { 75 throw new InvalidArgumentException('Provide at least 2 different classes'); 76 } 77 78 if (count($classes) !== count(array_unique($classes))) { 79 throw new InvalidArgumentException('Classes must be unique'); 80 } 81 82 $this->classes = array_values($classes); 83 $this->iterations = $iterations; 84 $this->inputLayerFeatures = $inputLayerFeatures; 85 $this->hiddenLayers = $hiddenLayers; 86 $this->activationFunction = $activationFunction; 87 $this->learningRate = $learningRate; 88 89 $this->initNetwork(); 90 } 91 92 public function train(array $samples, array $targets): void 93 { 94 $this->reset(); 95 $this->initNetwork(); 96 $this->partialTrain($samples, $targets, $this->classes); 97 } 98 99 /** 100 * @throws InvalidArgumentException 101 */ 102 public function partialTrain(array $samples, array $targets, array $classes = []): void 103 { 104 if (count($classes) > 0 && array_values($classes) !== $this->classes) { 105 // We require the list of classes in the constructor. 106 throw new InvalidArgumentException( 107 'The provided classes don\'t match the classes provided in the constructor' 108 ); 109 } 110 111 for ($i = 0; $i < $this->iterations; ++$i) { 112 $this->trainSamples($samples, $targets); 113 } 114 } 115 116 public function setLearningRate(float $learningRate): void 117 { 118 $this->learningRate = $learningRate; 119 $this->backpropagation->setLearningRate($this->learningRate); 120 } 121 122 public function getOutput(): array 123 { 124 $result = []; 125 foreach ($this->getOutputLayer()->getNodes() as $i => $neuron) { 126 $result[$this->classes[$i]] = $neuron->getOutput(); 127 } 128 129 return $result; 130 } 131 132 public function getLearningRate(): float 133 { 134 return $this->learningRate; 135 } 136 137 public function getBackpropagation(): Backpropagation 138 { 139 return $this->backpropagation; 140 } 141 142 /** 143 * @param mixed $target 144 */ 145 abstract protected function trainSample(array $sample, $target): void; 146 147 /** 148 * @return mixed 149 */ 150 abstract protected function predictSample(array $sample); 151 152 protected function reset(): void 153 { 154 $this->removeLayers(); 155 } 156 157 private function initNetwork(): void 158 { 159 $this->addInputLayer($this->inputLayerFeatures); 160 $this->addNeuronLayers($this->hiddenLayers, $this->activationFunction); 161 162 // Sigmoid function for the output layer as we want a value from 0 to 1. 163 $sigmoid = new Sigmoid(); 164 $this->addNeuronLayers([count($this->classes)], $sigmoid); 165 166 $this->addBiasNodes(); 167 $this->generateSynapses(); 168 169 $this->backpropagation = new Backpropagation($this->learningRate); 170 } 171 172 private function addInputLayer(int $nodes): void 173 { 174 $this->addLayer(new Layer($nodes, Input::class)); 175 } 176 177 private function addNeuronLayers(array $layers, ?ActivationFunction $defaultActivationFunction = null): void 178 { 179 foreach ($layers as $layer) { 180 if (is_array($layer)) { 181 $function = $layer[1] instanceof ActivationFunction ? $layer[1] : $defaultActivationFunction; 182 $this->addLayer(new Layer($layer[0], Neuron::class, $function)); 183 } elseif ($layer instanceof Layer) { 184 $this->addLayer($layer); 185 } else { 186 $this->addLayer(new Layer($layer, Neuron::class, $defaultActivationFunction)); 187 } 188 } 189 } 190 191 private function generateSynapses(): void 192 { 193 $layersNumber = count($this->layers) - 1; 194 for ($i = 0; $i < $layersNumber; ++$i) { 195 $currentLayer = $this->layers[$i]; 196 $nextLayer = $this->layers[$i + 1]; 197 $this->generateLayerSynapses($nextLayer, $currentLayer); 198 } 199 } 200 201 private function addBiasNodes(): void 202 { 203 $biasLayers = count($this->layers) - 1; 204 for ($i = 0; $i < $biasLayers; ++$i) { 205 $this->layers[$i]->addNode(new Bias()); 206 } 207 } 208 209 private function generateLayerSynapses(Layer $nextLayer, Layer $currentLayer): void 210 { 211 foreach ($nextLayer->getNodes() as $nextNeuron) { 212 if ($nextNeuron instanceof Neuron) { 213 $this->generateNeuronSynapses($currentLayer, $nextNeuron); 214 } 215 } 216 } 217 218 private function generateNeuronSynapses(Layer $currentLayer, Neuron $nextNeuron): void 219 { 220 foreach ($currentLayer->getNodes() as $currentNeuron) { 221 $nextNeuron->addSynapse(new Synapse($currentNeuron)); 222 } 223 } 224 225 private function trainSamples(array $samples, array $targets): void 226 { 227 foreach ($targets as $key => $target) { 228 $this->trainSample($samples[$key], $target); 229 } 230 } 231 }
title
Description
Body
title
Description
Body
title
Description
Body
title
Body