<?php
namespace Complex;
use InvalidArgumentException;
class Functions
{
/**
* Returns the absolute value (modulus) of a complex number.
* Also known as the rho of the complex number, i.e. the distance/radius
* from the centrepoint to the representation of the number in polar coordinates.
*
* This function is a synonym for rho()
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return float The absolute (or rho) value of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*
* @see rho
*
*/
public static function abs($complex): float
{
return self::rho($complex);
}
/**
* Returns the inverse cosine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse cosine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function acos($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
< $square = clone $complex;
< $square = Operations::multiply($square, $complex);
< $invsqrt = new Complex(1.0);
< $invsqrt = Operations::subtract($invsqrt, $square);
< $invsqrt = self::sqrt($invsqrt);
> $invsqrt = self::sqrt(Operations::subtract(1, Operations::multiply($complex, $complex)));
$adjust = new Complex(
$complex->getReal() - $invsqrt->getImaginary(),
$complex->getImaginary() + $invsqrt->getReal()
);
$log = self::ln($adjust);
return new Complex(
$log->getImaginary(),
-1 * $log->getReal()
);
}
/**
* Returns the inverse hyperbolic cosine of a complex number.
*
> * Formula from Wolfram Alpha:
* @param Complex|mixed $complex Complex number or a numeric value.
> * cosh^(-1)z = ln(z + sqrt(z + 1) sqrt(z - 1)).
* @return Complex The inverse hyperbolic cosine of the complex argument.
> *
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function acosh($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal() && ($complex->getReal() > 1)) {
return new Complex(\acosh($complex->getReal()));
}
< $acosh = self::acos($complex)
< ->reverse();
< if ($acosh->getReal() < 0.0) {
< $acosh = $acosh->invertReal();
< }
> $acosh = self::ln(
> Operations::add(
> $complex,
> Operations::multiply(
> self::sqrt(Operations::add($complex, 1)),
> self::sqrt(Operations::subtract($complex, 1))
> )
> )
> );
return $acosh;
}
/**
* Returns the inverse cotangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse cotangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function acot($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return self::atan(self::inverse($complex));
}
/**
* Returns the inverse hyperbolic cotangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse hyperbolic cotangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function acoth($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return self::atanh(self::inverse($complex));
}
/**
* Returns the inverse cosecant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse cosecant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function acsc($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::asin(self::inverse($complex));
}
/**
* Returns the inverse hyperbolic cosecant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse hyperbolic cosecant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function acsch($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::asinh(self::inverse($complex));
}
/**
* Returns the argument of a complex number.
* Also known as the theta of the complex number, i.e. the angle in radians
* from the real axis to the representation of the number in polar coordinates.
*
* This function is a synonym for theta()
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return float The argument (or theta) value of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*
* @see theta
*/
public static function argument($complex): float
{
return self::theta($complex);
}
/**
* Returns the inverse secant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse secant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function asec($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::acos(self::inverse($complex));
}
/**
* Returns the inverse hyperbolic secant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse hyperbolic secant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function asech($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::acosh(self::inverse($complex));
}
/**
* Returns the inverse sine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse sine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function asin($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
< $square = Operations::multiply($complex, $complex);
< $invsqrt = new Complex(1.0);
< $invsqrt = Operations::subtract($invsqrt, $square);
< $invsqrt = self::sqrt($invsqrt);
> $invsqrt = self::sqrt(Operations::subtract(1, Operations::multiply($complex, $complex)));
$adjust = new Complex(
$invsqrt->getReal() - $complex->getImaginary(),
$invsqrt->getImaginary() + $complex->getReal()
);
$log = self::ln($adjust);
return new Complex(
$log->getImaginary(),
-1 * $log->getReal()
);
}
/**
* Returns the inverse hyperbolic sine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse hyperbolic sine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function asinh($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal() && ($complex->getReal() > 1)) {
return new Complex(\asinh($complex->getReal()));
}
$asinh = clone $complex;
$asinh = $asinh->reverse()
->invertReal();
$asinh = self::asin($asinh);
return $asinh->reverse()
->invertImaginary();
}
/**
* Returns the inverse tangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse tangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function atan($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
return new Complex(\atan($complex->getReal()));
}
$t1Value = new Complex(-1 * $complex->getImaginary(), $complex->getReal());
$uValue = new Complex(1, 0);
$d1Value = clone $uValue;
$d1Value = Operations::subtract($d1Value, $t1Value);
$d2Value = Operations::add($t1Value, $uValue);
$uResult = $d1Value->divideBy($d2Value);
$uResult = self::ln($uResult);
> $realMultiplier = -0.5;
return new Complex(
> $imaginaryMultiplier = 0.5;
(($uResult->getImaginary() == M_PI) ? -M_PI : $uResult->getImaginary()) * -0.5,
>
$uResult->getReal() * 0.5,
> if (abs($uResult->getImaginary()) === M_PI) {
$complex->getSuffix()
> // If we have an imaginary value at the max or min (PI or -PI), then we need to ensure
);
> // that the primary is assigned for the correct quadrant.
}
> $realMultiplier = (
> ($uResult->getImaginary() === M_PI && $uResult->getReal() > 0.0) ||
/**
> ($uResult->getImaginary() === -M_PI && $uResult->getReal() < 0.0)
* Returns the inverse hyperbolic tangent of a complex number.
> ) ? 0.5 : -0.5;
*
> }
* @param Complex|mixed $complex Complex number or a numeric value.
>
< (($uResult->getImaginary() == M_PI) ? -M_PI : $uResult->getImaginary()) * -0.5,
< $uResult->getReal() * 0.5,
> $uResult->getImaginary() * $realMultiplier,
> $uResult->getReal() * $imaginaryMultiplier,
*/
> * Formula from Wolfram Alpha:
public static function atanh($complex): Complex
> * tanh^(-1)z = 1/2 [ln(1 + z) - ln(1 - z)].
{
> *
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
$real = $complex->getReal();
if ($real >= -1.0 && $real <= 1.0) {
return new Complex(\atanh($real));
} else {
return new Complex(\atanh(1 / $real), (($real < 0.0) ? M_PI_2 : -1 * M_PI_2));
}
}
< $iComplex = clone $complex;
< $iComplex = $iComplex->invertImaginary()
< ->reverse();
< return self::atan($iComplex)
< ->invertReal()
< ->reverse();
> $atanh = Operations::multiply(
> Operations::subtract(
> self::ln(Operations::add(1.0, $complex)),
> self::ln(Operations::subtract(1.0, $complex))
> ),
> 0.5
> );
>
> return $atanh;
}
/**
* Returns the complex conjugate of a complex number
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The conjugate of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function conjugate($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return new Complex(
$complex->getReal(),
-1 * $complex->getImaginary(),
$complex->getSuffix()
);
}
/**
* Returns the cosine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The cosine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function cos($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
return new Complex(\cos($complex->getReal()));
}
return self::conjugate(
new Complex(
\cos($complex->getReal()) * \cosh($complex->getImaginary()),
\sin($complex->getReal()) * \sinh($complex->getImaginary()),
$complex->getSuffix()
)
);
}
/**
* Returns the hyperbolic cosine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The hyperbolic cosine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function cosh($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
return new Complex(\cosh($complex->getReal()));
}
return new Complex(
\cosh($complex->getReal()) * \cos($complex->getImaginary()),
\sinh($complex->getReal()) * \sin($complex->getImaginary()),
$complex->getSuffix()
);
}
/**
* Returns the cotangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The cotangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function cot($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::inverse(self::tan($complex));
}
/**
* Returns the hyperbolic cotangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The hyperbolic cotangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function coth($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return self::inverse(self::tanh($complex));
}
/**
* Returns the cosecant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The cosecant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function csc($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::inverse(self::sin($complex));
}
/**
* Returns the hyperbolic cosecant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The hyperbolic cosecant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function csch($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
return new Complex(INF);
}
return self::inverse(self::sinh($complex));
}
/**
* Returns the exponential of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The exponential of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function exp($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if (($complex->getReal() == 0.0) && (\abs($complex->getImaginary()) == M_PI)) {
return new Complex(-1.0, 0.0);
}
$rho = \exp($complex->getReal());
return new Complex(
$rho * \cos($complex->getImaginary()),
$rho * \sin($complex->getImaginary()),
$complex->getSuffix()
);
}
/**
* Returns the inverse of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The inverse of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws InvalidArgumentException If function would result in a division by zero
*/
public static function inverse($complex): Complex
{
$complex = clone Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
throw new InvalidArgumentException('Division by zero');
}
return $complex->divideInto(1.0);
}
/**
* Returns the natural logarithm of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The natural logarithm of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws InvalidArgumentException If the real and the imaginary parts are both zero
*/
public static function ln($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
throw new InvalidArgumentException();
}
return new Complex(
\log(self::rho($complex)),
self::theta($complex),
$complex->getSuffix()
);
}
/**
* Returns the base-2 logarithm of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The base-2 logarithm of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws InvalidArgumentException If the real and the imaginary parts are both zero
*/
public static function log2($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
throw new InvalidArgumentException();
} elseif (($complex->getReal() > 0.0) && ($complex->getImaginary() == 0.0)) {
return new Complex(\log($complex->getReal(), 2), 0.0, $complex->getSuffix());
}
return self::ln($complex)
->multiply(\log(Complex::EULER, 2));
}
/**
* Returns the common logarithm (base 10) of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The common logarithm (base 10) of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws InvalidArgumentException If the real and the imaginary parts are both zero
*/
public static function log10($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
throw new InvalidArgumentException();
} elseif (($complex->getReal() > 0.0) && ($complex->getImaginary() == 0.0)) {
return new Complex(\log10($complex->getReal()), 0.0, $complex->getSuffix());
}
return self::ln($complex)
->multiply(\log10(Complex::EULER));
}
/**
* Returns the negative of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The negative value of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*
* @see rho
*
*/
public static function negative($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return new Complex(
-1 * $complex->getReal(),
-1 * $complex->getImaginary(),
$complex->getSuffix()
);
}
/**
* Returns a complex number raised to a power.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @param float|integer $power The power to raise this value to
* @return Complex The complex argument raised to the real power.
* @throws Exception If the power argument isn't a valid real
*/
public static function pow($complex, $power): Complex
{
$complex = Complex::validateComplexArgument($complex);
if (!is_numeric($power)) {
throw new Exception('Power argument must be a real number');
}
if ($complex->getImaginary() == 0.0 && $complex->getReal() >= 0.0) {
return new Complex(\pow($complex->getReal(), $power));
}
$rValue = \sqrt(($complex->getReal() * $complex->getReal()) + ($complex->getImaginary() * $complex->getImaginary()));
$rPower = \pow($rValue, $power);
$theta = $complex->argument() * $power;
if ($theta == 0) {
return new Complex(1);
}
return new Complex($rPower * \cos($theta), $rPower * \sin($theta), $complex->getSuffix());
}
/**
* Returns the rho of a complex number.
* This is the distance/radius from the centrepoint to the representation of the number in polar coordinates.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return float The rho value of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function rho($complex): float
{
$complex = Complex::validateComplexArgument($complex);
return \sqrt(
($complex->getReal() * $complex->getReal()) +
($complex->getImaginary() * $complex->getImaginary())
);
}
/**
* Returns the secant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The secant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function sec($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return self::inverse(self::cos($complex));
}
/**
* Returns the hyperbolic secant of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The hyperbolic secant of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function sech($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
return self::inverse(self::cosh($complex));
}
/**
* Returns the sine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The sine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function sin($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
return new Complex(\sin($complex->getReal()));
}
return new Complex(
\sin($complex->getReal()) * \cosh($complex->getImaginary()),
\cos($complex->getReal()) * \sinh($complex->getImaginary()),
$complex->getSuffix()
);
}
/**
* Returns the hyperbolic sine of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The hyperbolic sine of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function sinh($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
return new Complex(\sinh($complex->getReal()));
}
return new Complex(
\sinh($complex->getReal()) * \cos($complex->getImaginary()),
\cosh($complex->getReal()) * \sin($complex->getImaginary()),
$complex->getSuffix()
);
}
/**
* Returns the square root of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The Square root of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function sqrt($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
$theta = self::theta($complex);
$delta1 = \cos($theta / 2);
$delta2 = \sin($theta / 2);
$rho = \sqrt(self::rho($complex));
return new Complex($delta1 * $rho, $delta2 * $rho, $complex->getSuffix());
}
/**
* Returns the tangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The tangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws InvalidArgumentException If function would result in a division by zero
*/
public static function tan($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->isReal()) {
return new Complex(\tan($complex->getReal()));
}
$real = $complex->getReal();
$imaginary = $complex->getImaginary();
$divisor = 1 + \pow(\tan($real), 2) * \pow(\tanh($imaginary), 2);
if ($divisor == 0.0) {
throw new InvalidArgumentException('Division by zero');
}
return new Complex(
\pow(self::sech($imaginary)->getReal(), 2) * \tan($real) / $divisor,
\pow(self::sec($real)->getReal(), 2) * \tanh($imaginary) / $divisor,
$complex->getSuffix()
);
}
/**
* Returns the hyperbolic tangent of a complex number.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return Complex The hyperbolic tangent of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
* @throws \InvalidArgumentException If function would result in a division by zero
*/
public static function tanh($complex): Complex
{
$complex = Complex::validateComplexArgument($complex);
$real = $complex->getReal();
$imaginary = $complex->getImaginary();
$divisor = \cos($imaginary) * \cos($imaginary) + \sinh($real) * \sinh($real);
if ($divisor == 0.0) {
throw new InvalidArgumentException('Division by zero');
}
return new Complex(
\sinh($real) * \cosh($real) / $divisor,
0.5 * \sin(2 * $imaginary) / $divisor,
$complex->getSuffix()
);
}
/**
* Returns the theta of a complex number.
* This is the angle in radians from the real axis to the representation of the number in polar coordinates.
*
* @param Complex|mixed $complex Complex number or a numeric value.
* @return float The theta value of the complex argument.
* @throws Exception If argument isn't a valid real or complex number.
*/
public static function theta($complex): float
{
$complex = Complex::validateComplexArgument($complex);
if ($complex->getReal() == 0.0) {
if ($complex->isReal()) {
return 0.0;
} elseif ($complex->getImaginary() < 0.0) {
return M_PI / -2;
}
return M_PI / 2;
} elseif ($complex->getReal() > 0.0) {
return \atan($complex->getImaginary() / $complex->getReal());
} elseif ($complex->getImaginary() < 0.0) {
return -(M_PI - \atan(\abs($complex->getImaginary()) / \abs($complex->getReal())));
}
return M_PI - \atan($complex->getImaginary() / \abs($complex->getReal()));
}
}