Search moodle.org's
Developer Documentation

See Release Notes

  • Bug fixes for general core bugs in 4.2.x will end 22 April 2024 (12 months).
  • Bug fixes for security issues in 4.2.x will end 7 October 2024 (18 months).
  • PHP version: minimum PHP 8.0.0 Note: minimum PHP version has increased since Moodle 4.1. PHP 8.1.x is supported too.
<?php

namespace PhpOffice\PhpSpreadsheet\Shared\Trend;

abstract class BestFit
{
    /**
     * Indicator flag for a calculation error.
     *
     * @var bool
     */
    protected $error = false;

    /**
     * Algorithm type to use for best-fit.
     *
     * @var string
     */
    protected $bestFitType = 'undetermined';

    /**
     * Number of entries in the sets of x- and y-value arrays.
     *
     * @var int
     */
    protected $valueCount = 0;

    /**
     * X-value dataseries of values.
     *
     * @var float[]
     */
    protected $xValues = [];

    /**
     * Y-value dataseries of values.
     *
     * @var float[]
     */
    protected $yValues = [];

    /**
     * Flag indicating whether values should be adjusted to Y=0.
     *
     * @var bool
     */
    protected $adjustToZero = false;

    /**
     * Y-value series of best-fit values.
     *
     * @var float[]
     */
    protected $yBestFitValues = [];

> /** @var float */
protected $goodnessOfFit = 1;
> /** @var float */
protected $stdevOfResiduals = 0;
> /** @var float */
protected $covariance = 0;
> /** @var float */
protected $correlation = 0;
> /** @var float */
protected $SSRegression = 0;
> /** @var float */
protected $SSResiduals = 0;
> /** @var float */
protected $DFResiduals = 0;
> /** @var float */
protected $f = 0;
> /** @var float */
protected $slope = 0;
> /** @var float */
protected $slopeSE = 0;
> /** @var float */
protected $intersect = 0;
> /** @var float */
protected $intersectSE = 0;
> /** @var float */
protected $xOffset = 0;
> /** @var float */
protected $yOffset = 0;
> /** @return bool */
public function getError() { return $this->error; }
> /** @return string */
public function getBestFitType() { return $this->bestFitType; } /** * Return the Y-Value for a specified value of X. * * @param float $xValue X-Value * * @return float Y-Value */ abstract public function getValueOfYForX($xValue); /** * Return the X-Value for a specified value of Y. * * @param float $yValue Y-Value * * @return float X-Value */ abstract public function getValueOfXForY($yValue); /** * Return the original set of X-Values. * * @return float[] X-Values */ public function getXValues() { return $this->xValues; } /** * Return the Equation of the best-fit line. * * @param int $dp Number of places of decimal precision to display * * @return string */ abstract public function getEquation($dp = 0); /** * Return the Slope of the line. * * @param int $dp Number of places of decimal precision to display * * @return float */ public function getSlope($dp = 0) { if ($dp != 0) { return round($this->slope, $dp); } return $this->slope; } /** * Return the standard error of the Slope. * * @param int $dp Number of places of decimal precision to display * * @return float */ public function getSlopeSE($dp = 0) { if ($dp != 0) { return round($this->slopeSE, $dp); } return $this->slopeSE; } /** * Return the Value of X where it intersects Y = 0. * * @param int $dp Number of places of decimal precision to display * * @return float */ public function getIntersect($dp = 0) { if ($dp != 0) { return round($this->intersect, $dp); } return $this->intersect; } /** * Return the standard error of the Intersect. * * @param int $dp Number of places of decimal precision to display * * @return float */ public function getIntersectSE($dp = 0) { if ($dp != 0) { return round($this->intersectSE, $dp); } return $this->intersectSE; } /** * Return the goodness of fit for this regression. * * @param int $dp Number of places of decimal precision to return * * @return float */ public function getGoodnessOfFit($dp = 0) { if ($dp != 0) { return round($this->goodnessOfFit, $dp); } return $this->goodnessOfFit; } /** * Return the goodness of fit for this regression. * * @param int $dp Number of places of decimal precision to return * * @return float */ public function getGoodnessOfFitPercent($dp = 0) { if ($dp != 0) { return round($this->goodnessOfFit * 100, $dp); } return $this->goodnessOfFit * 100; } /** * Return the standard deviation of the residuals for this regression. * * @param int $dp Number of places of decimal precision to return * * @return float */ public function getStdevOfResiduals($dp = 0) { if ($dp != 0) { return round($this->stdevOfResiduals, $dp); } return $this->stdevOfResiduals; } /** * @param int $dp Number of places of decimal precision to return * * @return float */ public function getSSRegression($dp = 0) { if ($dp != 0) { return round($this->SSRegression, $dp); } return $this->SSRegression; } /** * @param int $dp Number of places of decimal precision to return * * @return float */ public function getSSResiduals($dp = 0) { if ($dp != 0) { return round($this->SSResiduals, $dp); } return $this->SSResiduals; } /** * @param int $dp Number of places of decimal precision to return * * @return float */ public function getDFResiduals($dp = 0) { if ($dp != 0) { return round($this->DFResiduals, $dp); } return $this->DFResiduals; } /** * @param int $dp Number of places of decimal precision to return * * @return float */ public function getF($dp = 0) { if ($dp != 0) { return round($this->f, $dp); } return $this->f; } /** * @param int $dp Number of places of decimal precision to return * * @return float */ public function getCovariance($dp = 0) { if ($dp != 0) { return round($this->covariance, $dp); } return $this->covariance; } /** * @param int $dp Number of places of decimal precision to return * * @return float */ public function getCorrelation($dp = 0) { if ($dp != 0) { return round($this->correlation, $dp); } return $this->correlation; } /** * @return float[] */ public function getYBestFitValues() { return $this->yBestFitValues; }
> /** @var mixed */ protected function calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const): void > private static $scrutinizerZeroPointZero = 0.0; { > $SSres = $SScov = $SScor = $SStot = $SSsex = 0.0; > /** foreach ($this->xValues as $xKey => $xValue) { > * @param mixed $x $bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue); > * @param mixed $y > */ $SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY); > private static function scrutinizerLooseCompare($x, $y): bool if ($const === true) { > { $SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY); > return $x == $y; } else { > } $SStot += $this->yValues[$xKey] * $this->yValues[$xKey]; > } > /** $SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY); > * @param float $sumX if ($const === true) { > * @param float $sumY $SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX); > * @param float $sumX2 } else { > * @param float $sumY2 $SSsex += $this->xValues[$xKey] * $this->xValues[$xKey]; > * @param float $sumXY } > * @param float $meanX } > * @param float $meanY > * @param bool|int $const $this->SSResiduals = $SSres; > */
< $SSres = $SScov = $SScor = $SStot = $SSsex = 0.0;
> $SSres = $SScov = $SStot = $SSsex = 0.0;
if ($this->DFResiduals == 0.0) { $this->stdevOfResiduals = 0.0; } else { $this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals); }
< if (($SStot == 0.0) || ($SSres == $SStot)) {
> // Scrutinizer thinks $SSres == $SStot is always true. It is wrong. > if ($SStot == self::$scrutinizerZeroPointZero || self::scrutinizerLooseCompare($SSres, $SStot)) {
$this->goodnessOfFit = 1; } else { $this->goodnessOfFit = 1 - ($SSres / $SStot); } $this->SSRegression = $this->goodnessOfFit * $SStot; $this->covariance = $SScov / $this->valueCount; $this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - $sumX ** 2) * ($this->valueCount * $sumY2 - $sumY ** 2)); $this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex); $this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2)); if ($this->SSResiduals != 0.0) { if ($this->DFResiduals == 0.0) { $this->f = 0.0; } else { $this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals); } } else { if ($this->DFResiduals == 0.0) { $this->f = 0.0; } else { $this->f = $this->SSRegression / $this->DFResiduals; } } }
> /** @return float|int */
private function sumSquares(array $values) { return array_sum( array_map( function ($value) { return $value ** 2; }, $values ) ); } /** * @param float[] $yValues * @param float[] $xValues */ protected function leastSquareFit(array $yValues, array $xValues, bool $const): void { // calculate sums $sumValuesX = array_sum($xValues); $sumValuesY = array_sum($yValues); $meanValueX = $sumValuesX / $this->valueCount; $meanValueY = $sumValuesY / $this->valueCount; $sumSquaresX = $this->sumSquares($xValues); $sumSquaresY = $this->sumSquares($yValues); $mBase = $mDivisor = 0.0; $xy_sum = 0.0; for ($i = 0; $i < $this->valueCount; ++$i) { $xy_sum += $xValues[$i] * $yValues[$i]; if ($const === true) { $mBase += ($xValues[$i] - $meanValueX) * ($yValues[$i] - $meanValueY); $mDivisor += ($xValues[$i] - $meanValueX) * ($xValues[$i] - $meanValueX); } else { $mBase += $xValues[$i] * $yValues[$i]; $mDivisor += $xValues[$i] * $xValues[$i]; } } // calculate slope $this->slope = $mBase / $mDivisor; // calculate intersect $this->intersect = ($const === true) ? $meanValueY - ($this->slope * $meanValueX) : 0.0; $this->calculateGoodnessOfFit($sumValuesX, $sumValuesY, $sumSquaresX, $sumSquaresY, $xy_sum, $meanValueX, $meanValueY, $const); } /** * Define the regression. * * @param float[] $yValues The set of Y-values for this regression * @param float[] $xValues The set of X-values for this regression */ public function __construct($yValues, $xValues = []) { // Calculate number of points $yValueCount = count($yValues); $xValueCount = count($xValues); // Define X Values if necessary if ($xValueCount === 0) { $xValues = range(1, $yValueCount); } elseif ($yValueCount !== $xValueCount) { // Ensure both arrays of points are the same size $this->error = true; } $this->valueCount = $yValueCount; $this->xValues = $xValues; $this->yValues = $yValues; } }