Search moodle.org's
Developer Documentation

See Release Notes

  • Bug fixes for general core bugs in 3.10.x will end 8 November 2021 (12 months).
  • Bug fixes for security issues in 3.10.x will end 9 May 2022 (18 months).
  • PHP version: minimum PHP 7.2.0 Note: minimum PHP version has increased since Moodle 3.8. PHP 7.3.x and 7.4.x are supported too.

Differences Between: [Versions 310 and 400] [Versions 310 and 401] [Versions 310 and 402] [Versions 310 and 403]

   1  <?php
   2  
   3  declare(strict_types=1);
   4  
   5  namespace Phpml\NeuralNetwork\Network;
   6  
   7  use Phpml\Estimator;
   8  use Phpml\Exception\InvalidArgumentException;
   9  use Phpml\Helper\Predictable;
  10  use Phpml\IncrementalEstimator;
  11  use Phpml\NeuralNetwork\ActivationFunction;
  12  use Phpml\NeuralNetwork\ActivationFunction\Sigmoid;
  13  use Phpml\NeuralNetwork\Layer;
  14  use Phpml\NeuralNetwork\Node\Bias;
  15  use Phpml\NeuralNetwork\Node\Input;
  16  use Phpml\NeuralNetwork\Node\Neuron;
  17  use Phpml\NeuralNetwork\Node\Neuron\Synapse;
  18  use Phpml\NeuralNetwork\Training\Backpropagation;
  19  
  20  abstract class MultilayerPerceptron extends LayeredNetwork implements Estimator, IncrementalEstimator
  21  {
  22      use Predictable;
  23  
  24      /**
  25       * @var array
  26       */
  27      protected $classes = [];
  28  
  29      /**
  30       * @var ActivationFunction|null
  31       */
  32      protected $activationFunction;
  33  
  34      /**
  35       * @var Backpropagation
  36       */
  37      protected $backpropagation;
  38  
  39      /**
  40       * @var int
  41       */
  42      private $inputLayerFeatures;
  43  
  44      /**
  45       * @var array
  46       */
  47      private $hiddenLayers = [];
  48  
  49      /**
  50       * @var float
  51       */
  52      private $learningRate;
  53  
  54      /**
  55       * @var int
  56       */
  57      private $iterations;
  58  
  59      /**
  60       * @throws InvalidArgumentException
  61       */
  62      public function __construct(int $inputLayerFeatures, array $hiddenLayers, array $classes, int $iterations = 10000, ?ActivationFunction $activationFunction = null, float $learningRate = 1)
  63      {
  64          if (count($hiddenLayers) === 0) {
  65              throw new InvalidArgumentException('Provide at least 1 hidden layer');
  66          }
  67  
  68          if (count($classes) < 2) {
  69              throw new InvalidArgumentException('Provide at least 2 different classes');
  70          }
  71  
  72          if (count($classes) !== count(array_unique($classes))) {
  73              throw new InvalidArgumentException('Classes must be unique');
  74          }
  75  
  76          $this->classes = array_values($classes);
  77          $this->iterations = $iterations;
  78          $this->inputLayerFeatures = $inputLayerFeatures;
  79          $this->hiddenLayers = $hiddenLayers;
  80          $this->activationFunction = $activationFunction;
  81          $this->learningRate = $learningRate;
  82  
  83          $this->initNetwork();
  84      }
  85  
  86      public function train(array $samples, array $targets): void
  87      {
  88          $this->reset();
  89          $this->initNetwork();
  90          $this->partialTrain($samples, $targets, $this->classes);
  91      }
  92  
  93      /**
  94       * @throws InvalidArgumentException
  95       */
  96      public function partialTrain(array $samples, array $targets, array $classes = []): void
  97      {
  98          if (count($classes) > 0 && array_values($classes) !== $this->classes) {
  99              // We require the list of classes in the constructor.
 100              throw new InvalidArgumentException(
 101                  'The provided classes don\'t match the classes provided in the constructor'
 102              );
 103          }
 104  
 105          for ($i = 0; $i < $this->iterations; ++$i) {
 106              $this->trainSamples($samples, $targets);
 107          }
 108      }
 109  
 110      public function setLearningRate(float $learningRate): void
 111      {
 112          $this->learningRate = $learningRate;
 113          $this->backpropagation->setLearningRate($this->learningRate);
 114      }
 115  
 116      public function getOutput(): array
 117      {
 118          $result = [];
 119          foreach ($this->getOutputLayer()->getNodes() as $i => $neuron) {
 120              $result[$this->classes[$i]] = $neuron->getOutput();
 121          }
 122  
 123          return $result;
 124      }
 125  
 126      /**
 127       * @param mixed $target
 128       */
 129      abstract protected function trainSample(array $sample, $target): void;
 130  
 131      /**
 132       * @return mixed
 133       */
 134      abstract protected function predictSample(array $sample);
 135  
 136      protected function reset(): void
 137      {
 138          $this->removeLayers();
 139      }
 140  
 141      private function initNetwork(): void
 142      {
 143          $this->addInputLayer($this->inputLayerFeatures);
 144          $this->addNeuronLayers($this->hiddenLayers, $this->activationFunction);
 145  
 146          // Sigmoid function for the output layer as we want a value from 0 to 1.
 147          $sigmoid = new Sigmoid();
 148          $this->addNeuronLayers([count($this->classes)], $sigmoid);
 149  
 150          $this->addBiasNodes();
 151          $this->generateSynapses();
 152  
 153          $this->backpropagation = new Backpropagation($this->learningRate);
 154      }
 155  
 156      private function addInputLayer(int $nodes): void
 157      {
 158          $this->addLayer(new Layer($nodes, Input::class));
 159      }
 160  
 161      private function addNeuronLayers(array $layers, ?ActivationFunction $defaultActivationFunction = null): void
 162      {
 163          foreach ($layers as $layer) {
 164              if (is_array($layer)) {
 165                  $function = $layer[1] instanceof ActivationFunction ? $layer[1] : $defaultActivationFunction;
 166                  $this->addLayer(new Layer($layer[0], Neuron::class, $function));
 167              } elseif ($layer instanceof Layer) {
 168                  $this->addLayer($layer);
 169              } else {
 170                  $this->addLayer(new Layer($layer, Neuron::class, $defaultActivationFunction));
 171              }
 172          }
 173      }
 174  
 175      private function generateSynapses(): void
 176      {
 177          $layersNumber = count($this->layers) - 1;
 178          for ($i = 0; $i < $layersNumber; ++$i) {
 179              $currentLayer = $this->layers[$i];
 180              $nextLayer = $this->layers[$i + 1];
 181              $this->generateLayerSynapses($nextLayer, $currentLayer);
 182          }
 183      }
 184  
 185      private function addBiasNodes(): void
 186      {
 187          $biasLayers = count($this->layers) - 1;
 188          for ($i = 0; $i < $biasLayers; ++$i) {
 189              $this->layers[$i]->addNode(new Bias());
 190          }
 191      }
 192  
 193      private function generateLayerSynapses(Layer $nextLayer, Layer $currentLayer): void
 194      {
 195          foreach ($nextLayer->getNodes() as $nextNeuron) {
 196              if ($nextNeuron instanceof Neuron) {
 197                  $this->generateNeuronSynapses($currentLayer, $nextNeuron);
 198              }
 199          }
 200      }
 201  
 202      private function generateNeuronSynapses(Layer $currentLayer, Neuron $nextNeuron): void
 203      {
 204          foreach ($currentLayer->getNodes() as $currentNeuron) {
 205              $nextNeuron->addSynapse(new Synapse($currentNeuron));
 206          }
 207      }
 208  
 209      private function trainSamples(array $samples, array $targets): void
 210      {
 211          foreach ($targets as $key => $target) {
 212              $this->trainSample($samples[$key], $target);
 213          }
 214      }
 215  }