Search moodle.org's
Developer Documentation

See Release Notes

  • Bug fixes for general core bugs in 3.10.x will end 8 November 2021 (12 months).
  • Bug fixes for security issues in 3.10.x will end 9 May 2022 (18 months).
  • PHP version: minimum PHP 7.2.0 Note: minimum PHP version has increased since Moodle 3.8. PHP 7.3.x and 7.4.x are supported too.
<?php

declare(strict_types=1);

namespace Phpml\NeuralNetwork\Network;

use Phpml\Estimator;
use Phpml\Exception\InvalidArgumentException;
use Phpml\Helper\Predictable;
use Phpml\IncrementalEstimator;
use Phpml\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction\Sigmoid;
use Phpml\NeuralNetwork\Layer;
use Phpml\NeuralNetwork\Node\Bias;
use Phpml\NeuralNetwork\Node\Input;
use Phpml\NeuralNetwork\Node\Neuron;
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
use Phpml\NeuralNetwork\Training\Backpropagation;

abstract class MultilayerPerceptron extends LayeredNetwork implements Estimator, IncrementalEstimator
{
    use Predictable;

    /**
     * @var array
     */
    protected $classes = [];

    /**
     * @var ActivationFunction|null
     */
    protected $activationFunction;

    /**
     * @var Backpropagation
     */
    protected $backpropagation;

    /**
     * @var int
     */
    private $inputLayerFeatures;

    /**
     * @var array
     */
    private $hiddenLayers = [];

    /**
     * @var float
     */
    private $learningRate;

    /**
     * @var int
     */
    private $iterations;

    /**
     * @throws InvalidArgumentException
     */
< public function __construct(int $inputLayerFeatures, array $hiddenLayers, array $classes, int $iterations = 10000, ?ActivationFunction $activationFunction = null, float $learningRate = 1) < {
> public function __construct( > int $inputLayerFeatures, > array $hiddenLayers, > array $classes, > int $iterations = 10000, > ?ActivationFunction $activationFunction = null, > float $learningRate = 1. > ) {
if (count($hiddenLayers) === 0) { throw new InvalidArgumentException('Provide at least 1 hidden layer'); } if (count($classes) < 2) { throw new InvalidArgumentException('Provide at least 2 different classes'); } if (count($classes) !== count(array_unique($classes))) { throw new InvalidArgumentException('Classes must be unique'); } $this->classes = array_values($classes); $this->iterations = $iterations; $this->inputLayerFeatures = $inputLayerFeatures; $this->hiddenLayers = $hiddenLayers; $this->activationFunction = $activationFunction; $this->learningRate = $learningRate; $this->initNetwork(); } public function train(array $samples, array $targets): void { $this->reset(); $this->initNetwork(); $this->partialTrain($samples, $targets, $this->classes); } /** * @throws InvalidArgumentException */ public function partialTrain(array $samples, array $targets, array $classes = []): void { if (count($classes) > 0 && array_values($classes) !== $this->classes) { // We require the list of classes in the constructor. throw new InvalidArgumentException( 'The provided classes don\'t match the classes provided in the constructor' ); } for ($i = 0; $i < $this->iterations; ++$i) { $this->trainSamples($samples, $targets); } } public function setLearningRate(float $learningRate): void { $this->learningRate = $learningRate; $this->backpropagation->setLearningRate($this->learningRate); } public function getOutput(): array { $result = []; foreach ($this->getOutputLayer()->getNodes() as $i => $neuron) { $result[$this->classes[$i]] = $neuron->getOutput(); } return $result;
> } } > > public function getLearningRate(): float /** > { * @param mixed $target > return $this->learningRate; */ > } abstract protected function trainSample(array $sample, $target): void; > > public function getBackpropagation(): Backpropagation /** > { * @return mixed > return $this->backpropagation;
*/ abstract protected function predictSample(array $sample); protected function reset(): void { $this->removeLayers(); } private function initNetwork(): void { $this->addInputLayer($this->inputLayerFeatures); $this->addNeuronLayers($this->hiddenLayers, $this->activationFunction); // Sigmoid function for the output layer as we want a value from 0 to 1. $sigmoid = new Sigmoid(); $this->addNeuronLayers([count($this->classes)], $sigmoid); $this->addBiasNodes(); $this->generateSynapses(); $this->backpropagation = new Backpropagation($this->learningRate); } private function addInputLayer(int $nodes): void { $this->addLayer(new Layer($nodes, Input::class)); } private function addNeuronLayers(array $layers, ?ActivationFunction $defaultActivationFunction = null): void { foreach ($layers as $layer) { if (is_array($layer)) { $function = $layer[1] instanceof ActivationFunction ? $layer[1] : $defaultActivationFunction; $this->addLayer(new Layer($layer[0], Neuron::class, $function)); } elseif ($layer instanceof Layer) { $this->addLayer($layer); } else { $this->addLayer(new Layer($layer, Neuron::class, $defaultActivationFunction)); } } } private function generateSynapses(): void { $layersNumber = count($this->layers) - 1; for ($i = 0; $i < $layersNumber; ++$i) { $currentLayer = $this->layers[$i]; $nextLayer = $this->layers[$i + 1]; $this->generateLayerSynapses($nextLayer, $currentLayer); } } private function addBiasNodes(): void { $biasLayers = count($this->layers) - 1; for ($i = 0; $i < $biasLayers; ++$i) { $this->layers[$i]->addNode(new Bias()); } } private function generateLayerSynapses(Layer $nextLayer, Layer $currentLayer): void { foreach ($nextLayer->getNodes() as $nextNeuron) { if ($nextNeuron instanceof Neuron) { $this->generateNeuronSynapses($currentLayer, $nextNeuron); } } } private function generateNeuronSynapses(Layer $currentLayer, Neuron $nextNeuron): void { foreach ($currentLayer->getNodes() as $currentNeuron) { $nextNeuron->addSynapse(new Synapse($currentNeuron)); } } private function trainSamples(array $samples, array $targets): void { foreach ($targets as $key => $target) { $this->trainSample($samples[$key], $target); } } }