Differences Between: [Versions 310 and 402] [Versions 311 and 402] [Versions 39 and 402] [Versions 400 and 402] [Versions 401 and 402]
(no description)
File Size: | 501 lines (12 kb) |
Included or required: | 0 times |
Referenced: | 0 times |
Includes or requires: | 0 files |
BestFit:: (22 methods):
getError()
getBestFitType()
getXValues()
getSlope()
getSlopeSE()
getIntersect()
getIntersectSE()
getGoodnessOfFit()
getGoodnessOfFitPercent()
getStdevOfResiduals()
getSSRegression()
getSSResiduals()
getDFResiduals()
getF()
getCovariance()
getCorrelation()
getYBestFitValues()
scrutinizerLooseCompare()
calculateGoodnessOfFit()
sumSquares()
leastSquareFit()
__construct()
getError() X-Ref |
No description |
getBestFitType() X-Ref |
No description |
getXValues() X-Ref |
Return the original set of X-Values. return: float[] X-Values |
getSlope($dp = 0) X-Ref |
Return the Slope of the line. param: int $dp Number of places of decimal precision to display return: float |
getSlopeSE($dp = 0) X-Ref |
Return the standard error of the Slope. param: int $dp Number of places of decimal precision to display return: float |
getIntersect($dp = 0) X-Ref |
Return the Value of X where it intersects Y = 0. param: int $dp Number of places of decimal precision to display return: float |
getIntersectSE($dp = 0) X-Ref |
Return the standard error of the Intersect. param: int $dp Number of places of decimal precision to display return: float |
getGoodnessOfFit($dp = 0) X-Ref |
Return the goodness of fit for this regression. param: int $dp Number of places of decimal precision to return return: float |
getGoodnessOfFitPercent($dp = 0) X-Ref |
Return the goodness of fit for this regression. param: int $dp Number of places of decimal precision to return return: float |
getStdevOfResiduals($dp = 0) X-Ref |
Return the standard deviation of the residuals for this regression. param: int $dp Number of places of decimal precision to return return: float |
getSSRegression($dp = 0) X-Ref |
param: int $dp Number of places of decimal precision to return return: float |
getSSResiduals($dp = 0) X-Ref |
param: int $dp Number of places of decimal precision to return return: float |
getDFResiduals($dp = 0) X-Ref |
param: int $dp Number of places of decimal precision to return return: float |
getF($dp = 0) X-Ref |
param: int $dp Number of places of decimal precision to return return: float |
getCovariance($dp = 0) X-Ref |
param: int $dp Number of places of decimal precision to return return: float |
getCorrelation($dp = 0) X-Ref |
param: int $dp Number of places of decimal precision to return return: float |
getYBestFitValues() X-Ref |
return: float[] |
scrutinizerLooseCompare($x, $y) X-Ref |
param: mixed $x param: mixed $y |
calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const) X-Ref |
param: float $sumX param: float $sumY param: float $sumX2 param: float $sumY2 param: float $sumXY param: float $meanX param: float $meanY param: bool|int $const |
sumSquares(array $values) X-Ref |
No description |
leastSquareFit(array $yValues, array $xValues, bool $const) X-Ref |
No description |
__construct($yValues, $xValues = []) X-Ref |
Define the regression. param: float[] $yValues The set of Y-values for this regression param: float[] $xValues The set of X-values for this regression |